

CATALOGUE PRODUITS

Les informations contenues dans ce catalogue sont correctes au moment de la publication.

Henry Technologies suit une politique de développement durable de ses produits; c'est pourquoi nous nous réservons le droit à tout changement sans avis préalable.

Du fait d'importants changements dans notre industrie, il est déjà arrivé que les produits de Henry Technologies soient utilisés à d'autres fins que celles pour lesquelles ils étaient conçus à l'origine. Notre politique, si possible, est d'offrir au client une aide à la recherche et au développement. Nos produits sont soumis à l'évaluation du client dès le stade de leur développement afin de lui permettre de vérifier si le produit convient à l'usage qu'il veut en faire. Le concepteur d'un système est seul responsable de l'usage approprié des produits impliqués dans son projet.

Pour plus de détails concernant notre couverture de garantie, merci de se reporter à nos conditions générales de vente.

Date de publication : 2008

Visitez notre site internet: www.henrytech.co.uk

ATALOGUE DES PRODUITS • F1

Introduction	04
Profil des sociétés	05
Fabrication et qualité des produits	06
Ingénierie	07

TABLE DES MATIÈRES <

L

LES PRODUITS AC&R COMPONENTS
Systèmes de contrôle d'huile
Séparateurs hélicoïdaux
Séparateurs hélicoïdaux avec réservoir inclus
Séparateurs d'huiles traditionnels
Régulateurs mécaniques de niveau d'huile
Régulateurs optroniques de niveau d'huile
Régulateurs électronique de niveau d'huile
Réservoirs d'huile
Clapets tarés
Vannes d'isolement
Filtre à tamis en acier
Filtres à huile et filtres déshydrateurs
Capteurs de niveaux
Rampes de vannes
Rampes de vannes électromagnétiques
Bouteilles anti-coup de liquide
Silencieux de refoulement
Eliminateurs de vibrations
Voyants liquides
Pièces détachées
Accessoires

IEC	DD	ODI	IITC	HEN	IDV

Vannes à boisseau sphérique	55
Clapets anti-retour	56
Vannes à soupape	58
Robinets sans presse-étoupe	59
Vannes d'arrêts à presse-étoupe	63
Vannes d'échange d'huile	67
Soupapes de sécurité	68
Disques de rupture	72
Vannes d'arrêt double à 3 voies	74
Indicateur de pression	75
Contacteur de pression	76
Montages Sentry de dispositifs de sécurité	77
Kits de sécurité	79
Filtre Y	80
Indicateurs d'humidité	81
Filtres déshydrateurs	82
Pièces détachées	84

INTRODUCTION

Henry Technologies Itd est une filiale de Henry Technologies Inc établie à Beloit, dans le Wisconsin, aux Etats-Unis. Géré par les fonds Hendricks depuis 2005, le groupe cherche continuellement à développer et améliorer sa relation avec le client sous toutes ses formes, du support technique à la livraison du produit.

Le groupe Henry Technologies ne cesse de s'agrandir avec l'acquisition de nouveaux produits et de nouvelles sociétés qui contribuent à rehausser nos normes de qualité et à améliorer notre direction technique, nos services et la valeur que nous ajoutons aux produits. Ces valeurs ont longtemps été associées aux marques Henry valves, AC&R Components et Chil-Con sur les marchés de la réfrigération et de la climatisation. Henry Technologies ltd, est située à Glasgow, en Écosse. Elle fabrique et distribue une large gamme de produits destinés au commerce et à l'industrie à travers l'Europe, le Moyen-Orient, l'Afrique et l'Asie.

Henry Technologies se repose sur 90 années d'expérience tout en sachant se projeter vers l'avenir. L'entreprise s'assure de la livraison de ses produits dans les temps impartis, leur réalisation selon les spécifications techniques du client et leur fiabilité en service. Nous nous sommes engagés à développer des produits destinés à résoudre les problèmes ou contribuer au progrès des technologies du monde changeant de la réfrigération et de la climatisation. Parce que ce marché est constamment en mouvement, Henry Technologies se tient prête en apportant des réponses à toutes nouvelles interrogations.

PROFIL DES SOCIÉTÉS

HENRY

La société a commencé la fabrication de ses produits à Chicago en 1914. Aujourd'hui, Henry Technologies est l'un des principaux fabricants mondiaux de produits intervenant dans le contrôle des écoulements pour le commerce et les industries de la réfrigération et de la climatisation. La gamme des produits

- des vannes à boisseau sphérique
- des clapets anti-retour,
- des vannes à soupape,
- des soupapes de sécurité,
- des montages de dispositifs de sécurité,
- des filtres déshydrateurs.

AC&R Components Inc a été rachetée en 1970 par Henry Valve Co. Aujourd'hui, l'ensemble de ses produits est fabriqué sur deux sites, l'un situé à Chatam, dans l'Illinois aux Etats-Unis et l'autre à Glasgow en Ecosse.

La marque AC&R Components Inc est un leader mondial de par la qualité de ses outils de contrôle de gestion d'huile et autres outils de protection des compresseurs de même que pour ses capacités de conception et d'innovation. La gamme des produits comprend:

- des séparateurs d'huile,
- des régulateurs de niveau d'huile mécaniques, électromécaniques et électroniques,
- des rampes de vannes,
- des bouteilles anti-coup de liquide,
- des silencieux de refoulement,
- des voyants..

Chil-con conçoit et fabrique des systèmes de transfert de chaleur et des appareils sous pression utilisables dans diverses applications industrielles. La gamme des produits comprend:

- des condenseurs tubulaires,
- des groupes d'eau glacée à détente directe
- des échangeurs thermiques,
- des séparateurs d'huile par coalescence,
- des bouteilles anti-coup de liquide,
- des réservoirs,
- des assemblages sur mesure.

Chil-Con est installée sur un site moderne à Brantford au Canada. Depuis que la société a démarré son activité de production il y a plus de 50 ans, elle s'est forgée une solide réputation dans les domaines de l'innovation et de la qualité.

Pour plus d'informations sur la gamme des produits de Chil-Con, merci de contacter Henry Technologies.

FABRICATION ET QUALITÉ DES PRODUITS

LA FABRICATION

La majorité des produits est fabriquée dans notre usine en Écosse où Henry Technologies a ses propres installations pour leur usinage, leur fabrication, leur assemblage et leur finition. Le reste de la gamme provient des installations Henry implantées aux Etats-Unis et au Canada. La fabrication est soutenue par une infrastructure locale sophistiquée de fournisseurs spécialisés dans l'ingénierie de précision.

La philosophie de l'entreprise est celle de la philosophie lean. Henry Technologies s'est lancée dans l'élimination des sources de gaspillages. La société utilise les aptitudes et l'expérience de ses employès afin de développer de nouvelles et meilleures méthodes pour satisfaire le client. Nous considérons cela comme une tâche non aboutie néanmoins nous sommes fiers de nos succès et encourageons la visite de nos clients pendant lesquelles nous pouvons échanger nos idées.

LA QUALITÉ

Henry, AC&R Components et Chil-Con. Des marques qui parlent d'euxmêmes en terme de qualité. Notre approche systématique de la conception, le choix des matériaux, le sourcing, les phases de fabrication et de test garantissent la notoriété de nos produits considérés comme les références de notre marché. Les systèmes de contrôle se conforment à diverses normes internationales incluant l'ISO 9001 :2000, la directive européenne concernant les équipements pressurisés (PED) et d'individuelles Normes Nationales.

Henry Technologies s'est engagée à l'excellence commerciale. Nous revoyons continuellement nos procédés afin d'identifier de potentielles voies d'amélioration. Ainsi, nous ne cessons de promouvoir et d'améliorer la qualité de nos produits. Les employés sont formés de façon à garantir une bonne compréhension des rôles et des responsabilités. De plus, nous attachons une grande importance à l'avis de nos clients qui nous permet de mettre en lumière les différentes possibilités d'affiner nos inventions et nos procédés.

L'INGÉNIERIE

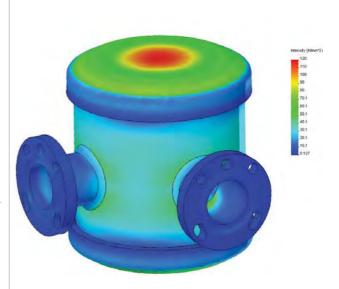
L'INGÉNIERIE

Henry Technologies possède sa propre équipe d'ingénieurs responsable de fournir un support technique à nos clients ainsi qu'à l'équipe interne chargée de la fabrication des produits. Elle a également pour mission le développement de nouveaux produits dont l'approche conceptuelle est systématiquement entreprise. Nous nous assurons ainsi que chaque nouvelle invention rencontre et même surpasse les besoins du client. Notre méthode de conception s'attache à fournir de nouveaux produits à la fois robustes et innovants.

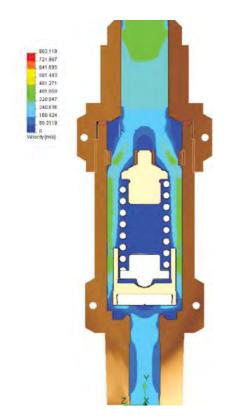
Les plus récents outils en matière de conception sont utilisés, ce qui inclue la modélisation en trois dimensions, l'analyse par éléments finis et la mécanique des fluides numériques (MFN). Chaque nouveau produit est rigoureusement testé avant d'être rendu disponible.

INFORMATIONS GÉNÉRALES

Afin de garantir la fiabilité des produits, des tests d'étanchéité sont effectués au moyen de différentes procédures de fabrication et de contrôle qualité sur site. Des tests de fonctionnement sont également réalisés si ils s'avèrent nécessaires.


Un système de peinture par poudrage est appliqué sur tous les produits de type réservoir lors de leur finition. Ce système de peinture fournit une excellente protection contre la corrosion capable de résister au test de pulvérisation saline ASTM B117 de 500 heures.

Ce catalogue dresse la liste des produits normalement utilisés avec les fluides frigorigènes traditionnels. Si un produit a besoin d'être adapté à vos besoins, merci de contacter le service client. Henry Technologies est capable de concevoir et fabriquer des produits sur mesure pour des usages particuliers.


L'unité utilisée pour la description des produits est le pouce sauf dans certains cas où le système métrique (en mm) est préféré. Pour plus de renseignements, merci de contacter le service client.

Remarques techniques

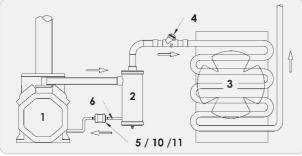
- Toutes les côtes dans ce catalogue sont nominales. Les côtes des produits sont sujettes aux tolérances de fabrication.
- Les dessins du catalogue ne montrent que les principaux traits et leurs dimensions. Pour plus de details, merci de contacter l'usine. Les modèles informatiques en trois dimensions et les dessins en 2 dimensions sont disponibles sur demande.
- 3. Abbrévations :
- MWP = Pression de fonctionnement admissible maximale (permise).
- NPT = Type de raccord hydraulique (American National Standard Taper Pipe Thread).
- SAE = Raccord fileté droit, selon SAE J513-92; ASME B1.1-89.
- ODS = Raccord de soudure femelle. Cette dimension correspond au diamètre extérieur du tuyau d'accouplement.
- Kv = Constante qui définit le débit d'eau (m3/h) qui, lorsque la vanne est entièrement ouverte, provoque une chute de pression de 1 barg.
- Tous les poids répertoriés dans le catalogue sont les poids nets à sec.

FEA - REGULATEUR DE NIVEAU D'HUILE

CFD - SOUPAPE DE SECURITE

SYSTÈME DE CONTRÔLE D'HUILE

Ce guide concerne les systèmes de contrôle d'huile supposés fonctionner avec des compresseurs scroll ou alternatifs et les fluides frigorigènes HCFC ou HFC. Pour d'autres types de systèmes, merci de contacter Henry Technologies.


Un système de contrôle d'huile approprié est essentiel pour assurer la lubrification d'un compresseur et un refroidissement énergétiquement efficace

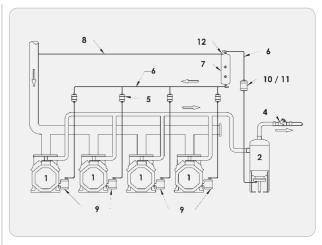
Du point de vue économique, un système de contrôle d'huile est une alternative intéressante au replacement de compresseurs coûteux à cause d'une mauvaise lubrification. Si il est choisi et installé correctement, un système de contrôle d'huile permet aux compresseurs de fonctionner pendant des années sans soucis techniques, les protégeant de niveaux d'huile trop bas ou trop élevés. De plus il ne requiert pas ou peu de maintenance. Un excès d'huile dans le système provoquer un coup d'huile dans le compresseur dont les effets seraient aussi nuisibles qu'un coup de liquide frigorigène.

L'extraction de l'huile contenue dans le gaz de refoulement permet d'augmenter l'efficacité du système. L'huile présente dans un système de réfrigération ou de conditionnement d'air réduit son efficacité pour les raisons suivantes :

- La couche d'huile sur les parois du condenseur et de l'évaporateur diminue les transferts thermiques.
- Le déplacement d'un certain volume de liquide frigorigène cause une augmentation du débit massique du système.

L'huile est supposée ne pas s'évaporer dans le système et de ce fait est un mauvais liquide frigorigène. Malgré tout, une quantité minimale est nécessaire pour lubrifier les clapets. Cette quantité est cependant très faible

SYSTÈME COMPOSÉ D'UN UNIQUE COMPRESSEUR


Système composé d'un unique compresseur

Le plus simple des systèmes se compose d'un unique compresseur. Le gaz refoulé par le compresseur est amené par conduite à l'entrée d'un séparateur d'huile (2) puis est transporté à sa sortie vers le condenseur (3). Il est conseillé de monter un clapet anti-retour entre ces deux derniers. Le retour de l'huile du séparateur vers le carter se fait au moyen d'une conduite sur laquelle est installée un filtre à tamis acier (5), un filtre à huile (10) ou un filtre déshydratateur (11).

Une soupape pilotée par flotteur situé à l'intérieur du séparateur empêche l'huile de circuler dans le reste du système de refroidissement. L'huile est libérée par petite quantité dans le carter à la pression de refoulement du gaz. La fermeture de la soupape évite le passage de gaz chaud dans le carter lorsque le niveau d'huile décroît dans le séparateur.

L'expérience montre que l'ajout d'une vanne électromagnétique, d'un voyant et d'une vanne d'isolement sur la conduite de retour d'huile améliore l'efficacité du système. Ces composants ne sont pas indiqués sur le schéma

Voir liste des équipements pour plus de détails sur chaque composant du système

SYSTÈME DE CONTRÔLE D'HUILE BASSE PRESSION

Système de contrôle d'huile basse pression

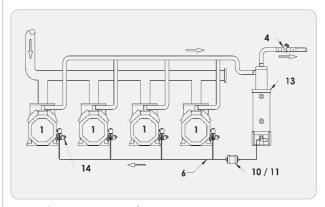
Ce système utilise normalement des compresseurs en parallèle ainsi que les trois principaux composants suivants: un séparateur d'huile (2), un réservoir d'huile (7) et des régulateurs de niveau d'huile (9). Le gaz de refoulement est amené par conduite à l'entrée du séparateur d'huile et est transporté à sa sortie vers le condenseur via un clapet anti-retour (4). La conduite de retour d'huile connecte le séparateur à une vanne située sur le dessus du réservoir (7). Une conduite d'évacuation relie la conduite d'aspiration au réservoir au moyen d'un clapet taré afin de réduire la pression interne du réservoir. L'assemblage obtenu est celui d'un système basse pression. Le clapet taré maintient la pression du réservoir à une pression déterminée, inférieure à la pression d'aspiration. Bien que des régulateurs mécaniques de niveau d'huile soient indiqués sur ce schéma, il est possible d'utiliser des régulateurs électromécaniques et électroniques (OPTRONIQUE).

La vanne située au dessous du réservoir d'huile est reliée par conduite aux régulateurs de niveau d'huile montés sur les carters des compresseurs. Ces régulateurs autorisent le passage de l'huile au fur et à mesure que son niveau diminue et inversement bloque l'accès lorsque le niveau atteint une valeur critique. Ainsi, le niveau d'huile dans chaque compresseur est contrôlé. Il est préférable d'utiliser un filtre à tamis acier (5) entre le réservoir et chaque régulateur afin de supprimer les impuretés éventuellement présentes dans l'huile. Il est possible de remplacer le filtre à tamis acier par un filtre à huile (11) ou un filtre à huile déshydrateur (11). Ces derniers doivent cependant être installés entre le séparateur et le réservoir d'huile. En raison de la nature absorbante de l'huile polyol ester (POE), il est recommandé d'installer soit un filtre à huile soit un filtre déshydrateur sur un système HFC/POE au lieu d'un filtre à tamis acier.

Sur les systèmes à température double et auxiliaires, assurez-vous que tous les régulateurs enregistrent un différentiel de pression positif situé dans leur domaine de fonctionnement.

L'expérience montre que l'ajout d'une vanne électromagnétique, d'un voyant et d'une vanne d'isolement sur la conduite de retour d'huile améliore l'efficacité du système. Ces composants ne sont pas indiqués sur le schéma.

Voir liste des équipements pour plus de détails sur chaque composant du système


Système de contrôle d'huile haute pression

Les systèmes de contrôle d'huile haute pression se différentient des systèmes précédents du fait qu'ils n'utilisent pas de réservoir d'huile. Ce type de système permet de réduire le volume de la tuyauterie et des installations.

Le principe d'un système de contrôle d'huile haute pression repose sur la capacité des régulateurs de niveau d'huile à opérer avec de larges différentiels de pressions. Les régulateurs mécaniques de niveau d'huile ne doivent pas être utilisés pour ce type de système. Il est généralement recommandé d'utiliser des régulateurs optroniques de niveau d'huile. Il est cependant également possible d'utiliser certains modèles de régulateurs électromécaniques de niveau d'huile. Un système haute pression n'est pas conseillé pour les systèmes HCFC/huile minérale car des problèmes de moussage peuvent apparaître.

Un clapet de refoulement anti-retour doit être installé (4). Le séparateur d'huile avec réservoir inclus (13) est inséré de la même façon qu'un séparateur d'huile traditionnel. Le tuyau de retour de l'huile connecte le bas de l'appareil à chaque régulateur. Un filtre à huile (10) ou un filtre déshydrateur (11) doit être placé entre le séparateur d'huile à réservoir inclus et les régulateurs (14).

L'expérience montre que l'ajout d'une vanne électromagnétique, d'un

SYSTÈME DE CONTRÔLE D'HUILE HAUTE PRESSION

voyant et d'une vanne d'isolement sur la conduite de retour de l'huile améliore l'efficacité du système. Ces composants ne sont pas indiqués sur le schéma.

Voir liste des équipements pour plus de détails sur chaque composant du système

LISTE DES ÉQUIPEMENTS NÉCESSAIRES AU CONTRÔLE DU NIVEAU D'HUILE

1. Le compresseur.

2. Le séparateur d'huile — la fonction d'un séparateur d'huile est d'extraire l'huile du gaz de refoulement pour la retourner dans le compresseur, de manière directe ou indirecte. Il permet donc de maintenir le niveau d'huile du carter du compresseur et augmente l'efficacité du système en empêchant une circulation excessive d'huile. Les séparateurs d'huile ne sont pas efficaces à 100%, c'est pourquoi ils ne doivent pas servir comme des outils de remplacement des pièges à huile, accumulateurs ou autres systèmes de tuyauterie pour le retour de l'huile. Henry Technologies fabriques deux différents types de séparateurs d'huile, hélicoïdal et traditionnel.

3. Le condenseur.

- 4. Le clapet de refoulement anti-retour La fonction d'un clapet de refoulement anti-retour est de permettre au fluide de ne circuler que dans un seul sens. Il permet ainsi d'éviter le retour du liquide frigorigène condensé dans le séparateur. Si le clapet de refoulement anti-retour n'est pas installé, il est possible que le séparateur fournisse une quantité trop élevée de liquide frigorigène au compresseur au démarrage. Cela peut entraîner la dilution de l'huile, provoquer un moussage excessif, induire des pressions d'huile irrégulières et endommager le compresseur. Le clapet de refoulement anti-retour doit être placé après le séparateur d'huile.
- 5. Filtre à tamis acier La fonction d'une crépine d'huile est d'extraire de l'huile les impuretés du système. Le but est de protéger les compresseurs et les régulateurs de niveau contre tout endommagement. Pour des recommandations sur les systèmes HFC/POE, se reporter à la section sur les filtres à huile et les filtres déshydrateurs.
- 6. Le conduite de retour d'huile.
- 7. **Le réservoir d'huile** La fonction d'un réservoir d'huile intégré dans un système basse pression est d'emmagasiner l'huile. La quantité d'huile circulant dans un système varie en fonction des conditions de fonctionnement. Le réservoir d'huile pourvoit aux besoins en augmentant la capacité d'entreposage du système.
- 8. La conduite de décompression.
- Les régulateurs mécaniques de niveau d'huile La fonction d'un régulateur mécanique de niveau d'huile est de

- contrôler le niveau d'huile dans le carter du compresseur, protégeant ainsi le compresseur contre tout endommagement. Il existe principalement deux types de régulateurs, à niveau fixe ou variable. Les régulateurs à niveau fixe et à niveau variable peuvent fonctionner avec un différentiel de pression respectivement de l'ordre de 0,35 à 2,1 barg et de 0,35 à 6,2 barg. Le différentiel de pression est la différence entre la pression du carter et la pression du réservoir. Selon le cas, la pression gravitationnelle doit aussi être ajoutée. Certains modèles de régulateurs sont installés avec un mécanisme d'égalisation qui permet d'équilibrer les niveaux d'huiles entre plusieurs compresseurs.
- 10. **Le filtre à huile** La fonction d'un filtre à huile est d'extraire de l'huile les impuretés d'un système. Le filtre à huile est recommandé pour les systèmes de type HFC/POE ne nécessitant qu'un filtrage au lieu des filtres à tamis acier
- 11. Le filtre déshydrateur La fonction d'un filtre déshydrateur est d'extraire de l'huile les impuretés d'un système et de la déshydrater. Le filtre déshydrateur est recommandé pour les systèmes de type HFC/POE nécessitant un filtrage et une déshydratation au lieu des filtres à tamis acier.
- 12. Clapet taré La fonction de la vanne de décompression est de maintenir une pression dans le réservoir d'huile supérieure à la pression du carter. Trois choix de pression sont disponibles ; 0,35 barg, 1,4 barg et 2,4 barg. Une plus grande pression augmenterait le débit de l'huile du réservoir vers les compresseurs. Le choix de la pression doit être fait en tenant compte du type de régulateur de niveau d'huile du système.
- 13. Le séparateur d'huile avec réservoir inclus La fonction d'un séparateur d'huile avec réservoir inclus est de combiner les fonctions d'un séparateur et d'un réservoir d'huile dans un seul composant. Il est conçu pour être intégré à un système de contrôle d'huile haute pression et élimine le besoin d'un réservoir séparé et de la tuyauterie associée.
- 14. Le régulateur électronique de niveau d'huile
 OPTRONIQUE —La fonction d'un régulateur d'huile optronique
 est de contrôler le niveau d'huile dans le carter du compresseur,
 protégeant ainsi le compresseur contre tout endommagement. Ce
 régulateur peut être utilisé sur les systèmes haute pression.

NOTES ET CALCULS

SÉPARATEURS D'HUILE HÉLICOÏDAUX

Un séparateur d'huile hélicoïdal extrait l'huile entraînée par le gaz comprimé et la restitue dans le compresseur de manière directe ou indirecte. Il permet donc de maintenir le niveau d'huile du carter et ainsi d'améliorer l'efficacité du système en évitant au maximum la circulation excessive d'huile dans un circuit frigorifique.

Les séparateurs hélicoïdaux possèdent un niveau d'efficacité supérieur aux séparateurs traditionnels.

Utilisation

Les séparateurs hélicoïdaux peuvent être adaptés à de multiples usages, incluant les multi-compresseurs et les unités de condensation a distance.

Les séparateurs hélicoïdaux sont étudiés pour les systèmes de contrôle d'huile basse pression. La conception de ces produits prévoit une utilisation avec des compresseurs scroll ou alternatifs. Leur usage n'est pas recommandé avec les compresseurs à vis ou à palette.

La gamme de produits est conçue pour être utilisée avec les fluides frigorigènes HFC et HCFC associés à leurs huiles. La gamme de série SN peut être utilisée avec les fluides frigorigènes suivants : HCFC, HFC et ammoniac. A haute pression, la série SH est prévue pour des systèmes fonctionnant avec le R410A et le CO₂ (Régime sous critique).

Merci de contacter Henry Technologies pour des utilisations nouvelles ou particulières

Fonctionnement

A l'entrée du séparateur, le fluide frigorigène contenant l'huile sous forme aérosole rencontre l'extrémité avant de la pale de l'hélice. Le mélange fluide/gaz est entraîné par centrifugation le long de la spirale de l'hélice rejetant les particules d'huile plus lourdes vers la périphérie. Elles entrent alors en contact avec un filtre installé sur la paroi intérieur du support. Le filtre sert à la fois de moyen d'extraction et de vidange de l'huile. Cette dernière coule alors le long du support, puis à travers un déflecteur pour être recueillie au fond du séparateur dans une zone de recueil.

Le déflecteur est spécialement conçu pour isoler la zone de recueil où est recueillie l'huile et pour éviter qu'elle soit de nouveau entraînée en prévenant toute turbulence. Le fluide frigorigène ainsi épuré est ensuite évacué à travers un deuxième filtre situé sous la pale de l'hélice à son extrémité. Une soupape à pointeau pilotée par flotteur permet la réinjection de l'huile dans le carter du compresseur ou le réservoir d'huile. Un aimant est placé au fond de la chambre afin d'attirer les éventuels débris métalliques pouvant gêner le fonctionnement de la soupape. Un système convenablement choisi peut atteindre une efficacité de 99%.

Caractéristiques générales

- Un système breveté par Henry Technologies
- Jusqu'à 99% d efficacité
- Faible chute de pression
- Absence de blocages due à une quantité trop élevée d'huile dans le système
- Ábsence d'émulsion d'huile au démarrage due à une huile laissée à l'état de coalescence
- Possibilité de nettoyer/remplacer le flotteur pour les modèles S-52*, SN-52* et S-54*

Brevets US 5113671, 5404730 & 5271245; Mexique 173552; Danemark, France, RU et Italie 0487959; Allemagne P69106849.6-08; Taiwan UM-74863; Brevets en suspens pour les pays restants.

Caractéristiques techniques

Pour tous les modèles (série SH exclue) :

Pressions de fonctionnement admissibles = 0 à 31 barg Températures de fonctionnement admissibles = -10 °C à +130 °C

Pour les modèles de la série SH :

Pressions de fonctionnement admissibles = 0 à 40 barg Températures de fonctionnement admissibles = -10 °C à +110 °C

Matériaux de construction

Principaux composants : l'enveloppe, les embouts et les raccords sont en acier enrichi en carbone. Le flotteur est en acier inoxydable. Le support de la soupape à pointeau est fait soit en laiton soit en acier selon le modèle.

No de référence	Dimension des raccords (pouce)				Côtes (m	nm)			Détails du montage	Dessin de référence	Poids (kg)	Volume de précharge (1)	Cat. CE
		ØA	В	С	D	E	F	ØG					
S-5180	1/4 ODS	64	166	45	43	N/A	19.5	N/A	M10	fig.1	1.2	0.1	SEP
S-5181	3/8 ODS	64	195	45	71	N/A	19.5	N/A	M10	fig.1	1.4	0.1	SEP
S-5182-CE	1/2 ODS	102	333	69	64	N/A	58.5	N/A	M10	fig.2	3.4	0.4	CAT I
S-5185-CE	5/8 ODS	102	384	69	66	N/A	58.5	N/A	M10	fig.2	3.9	0.4	CAT I
S-5187-CE	7/8 ODS	102	434	74	76	N/A	58.5	N/A	M10	fig.2	4.6	0.4	CAT I
S-5188-CE	1 1/8 ODS	102	483	75	78	N/A	58.5	N/A	M10	fig.2	4.6	0.4	CAT I
S-5190-CE	1 3/8 ODS	152	384	108	91	N/A	60.5	N/A	M10	fig.2	8.9	1.1	CAT I
S-5192-CE	1 5/8 ODS	152	428	108	98	N/A	60.5	N/A	M10	fig.2	9.5	1.1	CAT I
S-5194-CE	2 1/8 ODS	152	436	114	105	N/A	60.5	N/A	M10	fig.2	9.7	1.1	CAT I
5-5285-CE	5/8 ODS	102	513	69	66	95	N/A	120.7	trous de Ø11mm	fig.3	6.3	0.7	CAT I
S-5287-CE	7/8 ODS	102	563	74	76	95	N/A	120.7	trous de Ø11mm	fig.3	7	0.7	CAT I
5-5288-CE	1 1/8 ODS	102	614	75	78	95	N/A	120.7	trous de Ø11mm	fig.3	7	0.7	CAT I
N-5290-CE	1 3/8 ODS	152	508	108	91	99	N/A	113	2 fentes de Ø14mm	fig.3	12	0.7	CAT I (Voir remark
N-5292-CE	1 5/8 ODS	152	559	108	98	99	N/A	113	2 fentes de Ø14mm	fig.3	12.5	0.7	CAT I (Voir remard
N-5294-CE	2 1/8 ODS	152	559	114	105	99	N/A	113	2 fentes de Ø14mm	fig.3	13	0.7	CAT I (Voir remard
5-5411-CE	1 5/8 ODS	219	641	148	164	100	N/A	166	3 fentes de Ø14mm	fig.4	25	0.7	CAT III
5-5412-CE	2 1/8 ODS	219	641	148	164	100	N/A	166	3 fentes de Ø14mm	fig.4	26	0.7	CAT II
5-5413-CE	2 5/8 ODS	273	750	183	201	100	N/A	223	3 fentes de Ø14mm	fig.4	39	0.7	CAT II
5-5414-CE	3 1/8 ODS	324	821	215	229	100	N/A	273	3 fentes de Ø14mm	fig.4	53	0.7	CAT IV

GAMME HAUT	AMME HAUTE PRESSION														
No de référence	référence raccords (pouce) montage référence précharge (1)														
		ØA	В	С	D	E	F	ØG							
SH-5182-CE	1/2 ODS	102	352	69	81	N/A	61	N/A	M10	fig.2	4	0.4	CAT I		
SH-5185-CE	5/8 ODS	102	401	69	81	N/A	61	N/A	M10	fig.2	4.5	0.4	CAT I		
SH-5187-CE	7/8 ODS	102	453	74	94	N/A	61	N/A	M10	fig.2	5.1	0.4	CAT I		
SH-5188-CE	1 1/8 ODS	102	500	75	94	N/A	61	N/A	M10	fig.2	5.2	0.4	CAT I		
SH-5190-CE	1 3/8 ODS	152	570	108	135	95	N/A	100	3 fentes de Ø14mm	fig.5	9.4	1.1	CAT II		

L'ajout du suffixe « M » au numéro de référence indique que le système métrique est préféré pour les dimensions des raccords (ex : S-5192M-CE). Le suffixe « X » indique qu'un raccord de taille 10 mm ODS est préférable au lieu du raccord de 3/8 de pouce (ex : S-5185X-CE). L'ajout du suffixe « XM » indique que le séparateur doit être installé en tenant compte des deux indications précédentes. Merci de contacter Henry Technologies pour se renseigner sur la disponibilité des versions M, X et XM.

SÉPARATEURS D'HUILE HÉLICOÏDAUX

Tables de performances

La table ci-dessous donne la puissance frigorifique en kW de chaque séparateur pour des températures d'évaporation et de condensation fixées. Cette table peut servir de référence rapide mais il est recommandé de suivre les conseils qui suivent en ce qui concerne le choix de la taille du séparateur hélicoïdal

Guide de sélection de la taille du séparateur hélicoïdal Le paramètre le plus important dans le choix du modèle est le volume de refoulement exprimé en m³/h. Il s'agit du débit volumétrique à l'entrée du séparateur d'huile, à ne pas confondre avec le volume balayé.

Une méthode rapide consiste à utiliser les tables de capacité de refoulement. Les tables ci-contre ont été obtenues avec les liquides frigorigènes R22 et R404/R507.

Une table pour le R717 a aussi été incluse. Plus de tables pour d'autres liquides frigorigènes sont disponibles à la demande du client.

Les tables sont obtenues en considérant un cycle simplifié de réfrigération et de ce fait le calcul du volume de refoulement est approximatif. Cette méthode a cependant été utilisée avec succès pendant des années pour des systèmes de réfrigération normaux.

Lorsque le calcul du volume de refoulement nécessite une plus grande précision, il est conseillé d'utiliser la méthode de calcul du débit volumique. Cette méthode est aussi recommandée pour les circuits en cascade utilisant du ${\rm CO_2}$ et pour des utilisations particulières.

		Puissance	frigorifique en kW à la t	empérature nominale	de l'évaporateur		Walana and day land
No de référence	R40	4A/507	R	22	R	117	Volume maximale d refoulement (m ³ /hr
	-40°C	5°C	-40°C	5°C	-40°C	5°C	reroutement (in /in
S-5180	2.6	3.5	2.6	3.5	N/A	N/A	1.3
S-5181	3.5	5.3	3.5	5.3	N/A	N/A	1.7
S-5182-CE, SH-5182-CE	5.3	7	5.3	7	N/A	N/A	2.6
S-5185-CE, S-5285-CE & SH-5185-CE	14.1	19.4	15.8	19.4	N/A	N/A	6.8
S-5187-CE, S-5287-CE & SH-5187-CE	23	30	24.6	28.2	N/A	N/A	10.2
S-5188-CE, S-5288-CE & SH-5188-CE	29.8	38.7	31.7	37	N/A	N/A	13.6
S-5190-CE, SN-5290-CE & SH-5190-CE	42.2	52.8	44.8	49.3	59.8 (Remarque 1)	63.3 (Remarque 1)	18.7
S-5192-CE & SN-5292-CE	52.8	66.9	56.3	63.4	77.4 (Remarque 1)	80.9 (Remarque 1)	23.8
S-5194-CE, SN-5294-CE & S-5411-CE	84.4	109	88	106	120 (Remarque 1)	127 (Remarque 1)	37.4
S-5412-CE	109	144	123	137	N/A	N/A	49.3
S-5413-CE	225	292	250	281	N/A	N/A	102
S-5414-CE	352	461	394	447	N/A	N/A	159.8

Remarques:

Les puissances fournies pour l'ammoniac conviennent uniquement à la série SN

2. Toutes les valeurs sont données pour une température de condensation de 38 °C, une température d'aspiration de 18°C et une taille de raccord égale à celle du clapet de refoulement du compresseur.

Guide de sélection du séparateur hélicoïdal à partir des tables

Afin d'utiliser les tables de sélection du facteur de refoulement, le type de liquide frigorigène, les puissances frigorifiques maximale et minimale et les températures d'évaporation et de condensation doivent être connus.

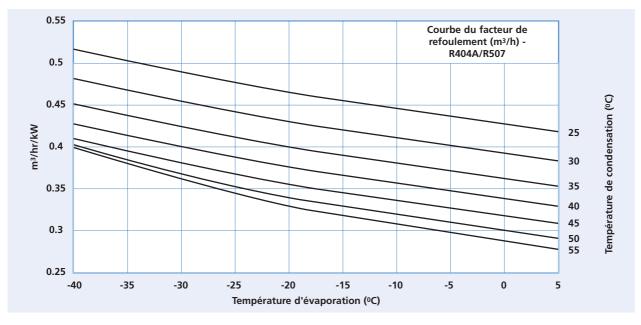
Exemple

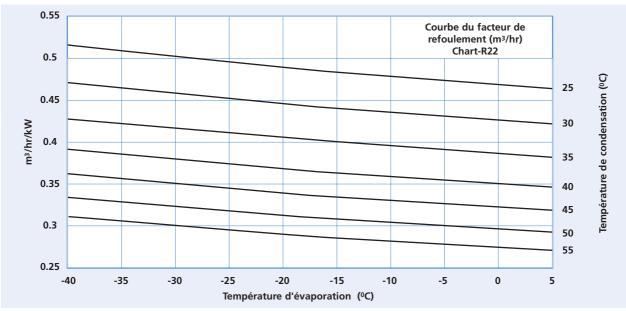
Liquide frigorigène R404A Puissance frigorifique maximale = 40 kW Puissance frigorifique minimale = 25 kW Température d'évaporation = -35 °C Température de condensation = +40 °C

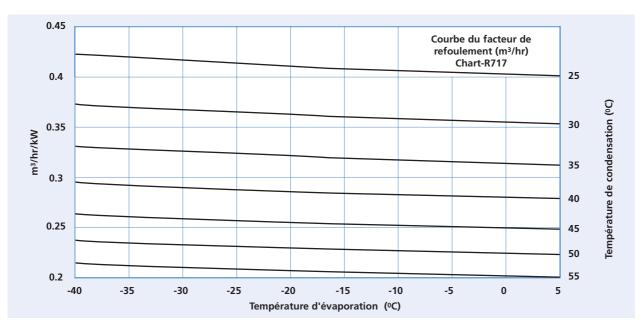
A partir de la table du R404A, suivre la ligne de température d'évaporation de -35 °C jusqu'à son intersection avec la ligne de température de condensation de 40 °C. Tracer un trait à l'horizontal à partir de ce point jusqu'au facteur m³/h/kW. Multiplier ce facteur par les puissances frigorifiques maximale et minimale afin d'obtenir les volumes de refoulement.

Selon la table du R404A, le facteur $m^3/h/kW = 0.42$

Donc :


Volume de refoulement maximale = $(0.42 * 40) = 16.8 \text{ m}^3/\text{h}$ Volume de refoulement minimale = $(0.42 * 25) = 10.5 \text{ m}^3/\text{h}$ Les valeurs maximale et minimale calculées doivent être comparées avec la puissance nominale du séparateur hélicoïdal. Voir tables de performances des séparateurs pour obtenir les puissances nominales.


De manière générale, il est recommandé que le débit maximal ne dépasse pas la puissance nominale du séparateur. De plus, le débit minimal ne doit pas être inférieur à 25% de la puissance nominale. A partir des résultats calculés selon les données de l'exemple, le choix du séparateur se porte soit sur le modèle S-5190-CE soit sur le SN-5290, chacun ayant une puissance nominale de 18,7 m³/h. La décision finale varie selon que l'utilisateur désire ou non un modèle de séparateur avec flotteur détachable/lavable


Remarques complémentaires sur la sélection

- 1. C'est dans un souci d'optimisation qu'il est recommandé que le débit minimal soit au minimum égal à 25% de la puissance du séparateur. En dessous de ce facteur de charge, l'efficacité du séparateur est réduite. Pour les systèmes présentant des conditions extrêmes de décharge, il est préférable d'utiliser un séparateur par compresseur plutôt qu'un unique séparateur pour tout le système.
- La connaissance de la puissance frigorifique du système et des temps de fonctionnement pour les cas de pleine charge et de faible charge peut aider au choix du séparateur.
- Si le débit maximal de refoulement est légèrement dépassé et si la charge du système varie, choisir un séparateur plus petit. Le surdimensionnement n'est pas recommandé.

Guide de sélection du séparateur hélicoïdal à partir du calcul du volume de refoulement

La méthode pour calculer le volume de refoulement nécessite de connaître les débits massiques maximum et minimum du système et la densité du gaz à l'entrée du séparateur. Ces débits massiques peuvent être calculés soit directement soit au moyen d'un logiciel d'analyse de cycle de réfrigération. De cette façon, la surchauffe (utile et additionnelle), le sous-refroidissement ainsi que d'autres facteurs peuvent être pris en compte dans le calcul du débit massique.

La densité du gaz à l'entrée du séparateur est fonction de la température et de la pression. Elle doit être calculée pour une pression égale à la pression de condensation saturée. La température d'entrée du gaz dépend d'un certain nombre de facteurs propres au système comme les performances du compresseur. Le gaz est considéré comme en état de surchauffe.

Exemple

Liquide frigorigène CO2 (R744)

Puissance frigorifique maximale = 62 kW

Puissance frigorifique minimale = 40 kW

Température d'évaporation = -35 °C

Température de condensation (cascade) = 0 °C

Degré de surchauffe utile = 5K

Degré de surchauffe additionnelle = 6K

Degré de sous refroidissement = 2K

On obtient alors:-

Débit massique maximum = 904 kg/h Débit massique minimum = 583 kg/h

Densité du gaz surchauffé à l'entrée du séparateur = 63,5 kg/m³ (pour une température d'entrée du séparateur de 60 °C)

Remarque : Débit massique = [(Puissance frigorifique/effet de réfrigération)*3600]

Utiliser l'équation suivante:-

Volume de refoulement = $\frac{\text{Debit massique}}{\text{Densite du gaz}}$

Pour l'exemple en question :

Volume de refoulement maximum = $\frac{904}{63.5}$ = 14.2 m³/hr

Volume de refoulement minimum = $\frac{583}{63.5}$ = 9.2 m³/hr

D'après les résultats, il est recommandé de choisir le modèle SH-5188-CE (voir Rq 3 pour ce qui concerne le sous-dimensionnement minimale).

Installation - Recommandations

- Les séparateurs d'huile ne sont pas efficaces à 100%, c'est pourquoi ils ne doivent pas être considérés comme des outils de remplacement de pièges à huile, accumulateurs ou autres systèmes de tuyauterie pour le retour de l'huile.
- Une pré-charge est nécessaire pour ne pas endommager la vanne à pointeau. Voir tables de performances pour les quantités de précharge.
- 3. Installer le séparateur d'huile verticalement et raisonnablement proche du compresseur. Mettre en place avec précaution la tuyauterie afin d'éviter des charges excessives ou des vibrations au niveau des raccords d'entrée et de sortie. Prendre garde à bien stabiliser le séparateur au niveau du goujon M10 ou sur le support prévu à cet effet.
- Un clapet anti-retour doit être installé en amont du raccord de sortie afin d'empêcher la rentrée du liquide frigorigène provenant du condenseur.

SÉPARATEUR D'HUILE HÉLICOÏDAL AVEC RÉSERVOIR INCLUS

Un séparateur d'huile hélicoïdal avec réservoir inclus extrait l'huile entraînée par le gaz comprimé et la restitue dans le compresseur. Il permet donc de maintenir le niveau d'huile du carter et ainsi d'améliorer l'efficacité du système en évitant au maximum la circulation excessive d'huile dans un circuit frigorifique

Utilisation

Les séparateurs hélicoïdaux avec réservoir inclus peuvent être adaptés à de multiples usages incluant les multi-compresseurs par exemple. Ces séparateurs sont étudiés pour les systèmes de contrôle d'huile haute pression.

La conception de ces produits prévoit une utilisation avec des compresseurs scroll ou alternatifs. Leur usage n'est pas recommandé avec les compresseurs à vis ou à palette. La gamme de produits est conçue pour être utilisée avec les fluides frigorigènes HFC associés à leurs huiles.

Merci de contacter Henry Technologies pour des utilisations nouvelles ou particulières

Fonctionnement

A l'entrée du séparateur, le fluide frigorigène contenant l'huile sous forme aérosole rencontre l'extrémité avant de la pale de l'hélice. Le mélange fluide/gaz est entraîné par centrifugation le long de la spirale de l'hélice rejetant les particules d'huile plus lourdes vers la périphérie. Elles entrent alors en contact avec un filtre installé sur la paroi intérieur du support.

Le filtre sert à la fois de moyen d'extraction et de vidange de l'huile. Cette dernière coule alors le long du support, puis à travers un déflecteur pour être recueillie au fond du séparateur dans une zone de recueil.

Le déflecteur est spécialement conçu pour isoler cette zone de recueil où est recueillie l'huile et pour éviter qu'elle soit de nouveau entraînée en prévenant toute turbulence. Le fluide frigorigène ainsi épuré est ensuite évacué à travers un deuxième filtre situé sous la pale de l'hélice à son extrémité. Les séparateurs d'huile avec réservoirs inclus disposent d'un système d'évacuation d'huile différent. Le mécanisme de contrôle par flotteur est supprimé et une conduite relie directement la zone de recueil au compresseur via une vanne rotalock. Un système convenablement choisi peut atteindre une efficacité de 99%.

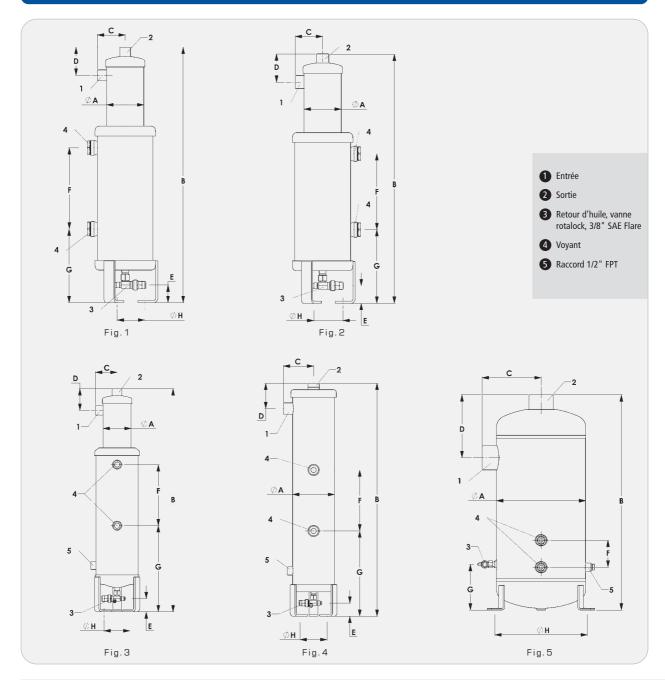
Caractéristiques générales

- Un système de Henry Technologies breveté
- Jusqu'à 99% d efficacité
- Faible chute de pression
- Absence de blocages due à une quantité trop élevée d'huile dans le système
- Absence d'émulsion d'huile au démarrage due à une huile laissée à l'état de coalescence

Brevets US 5113671, 5404730 & 5271245; Mexique 173552; Danemark, France, RU et Italie 0487959; Allemagne P69106849.6-08; Taiwan UM-74863; Brevets en suspens pour les pays restants.

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 31 barg Températures de fonctionnement admissibles = -10 °C à +130 °C


Matériaux de construction

Principaux composants : l'enveloppe, les embouts et les raccords sont en acier enrichi en carbone

SÉPARATEUR I	D'HUILE HÉLI	COÏDAL AVE	C RÉSERVOI	R INCLUS										
No de référence	Dimension des raccords				Côtes	s (mm)				Détails du montage	Dessin de référence	Capacité en huile (I)	Poids (kg)	Cat. CE
reference	(pouce)	ØA	В	С	D	E	F	G	ØH	montage	reference	en nune (i)	(Kg)	
S-5387-6L-CE	7/8 ODS	102 & 152	699	74	76	48	222	201	113	3 fentes de Ø14mm	fig.1	5.7	11	CAT II
S-5388-6L-CE	1 1/8 ODS	102 & 152	682	75	78	48	207	201	113	3 fentes de Ø14mm	fig.2	5.4	11	CAT II
S-5388-CE	1 1/8 ODS	102 & 152	813	75	78	48	222	311	108	3 fentes de Ø14mm	fig.3	7.6	13	CAT II
S-5390-CE	1 3/8 ODS	152	850	108	91	48	222	311	113	3 fentes de Ø14mm	fig.4	7.6	15	CAT II
S-5392-CE	1 5/8 ODS	152	900	108	98	48	222	311	113	3 fentes de Ø14mm	fig.4	7.6	16	CAT II
S-5394-CE	2 1/8 ODS	152	902	114	105	48	222	311	113	3 fentes de Ø14mm	fig.4	7.6	16.5	CAT II
S-5422-CE	2 1/8 ODS	219	699	148	164	N/A	127	149	283	3 fentes de Ø14mm	fig.5	9.8	29	CAT II
S-5423-CE	2 5/8 ODS	273	790	183	201	N/A	161	173	337	3 fentes de Ø14mm	fig.5	15	45	CAT III
S-5424-CE	3 1/8 ODS	324	784	215	229	N/A	99	166	388	3 fentes de Ø14mm	fig.5	17	55	CAT III

SÉPARATEUR D'HUILE HÉLICOÏDAL AVEC RÉSERVOIR INCLUS

Tables de performances

La table ci-dessous donne la puissance frigorifique en kW de chaque séparateur pour des températures d'évaporation et de condensation fixées. Cette table peut servir de référence rapide mais il est recommandé de suivre les conseils qui suivent en ce qui concerne le choix de la taille du séparateur hélicoïdal.

		Puissa	nce frigorifique en kW à la	a température nominale d	e l'évaporateur		
No de référence	R404	A/507	R	22	R7	17	Volume maximale de refoulement (m³/hr)
	-40°C	5°C	-40°C	5°C	-40°C	5°C	
S-5387-6L-CE	23	30	N/A	N/A	N/A	N/A	10.2
5-5388-6L-CE & S-5388-CE	29.8	38.7	N/A	N/A	N/A	N/A	13.6
S-5390-CE	42.2	52.8	N/A	N/A	N/A	N/A	18.7
S-5392-CE	52.8	66.9	N/A	N/A	N/A	N/A	23.8
S-5394-CE	84.4	109	N/A	N/A	N/A	N/A	37.4
S-5422-CE	109	144	N/A	N/A	N/A	N/A	49.3
S-5423-CE	225	292	N/A	N/A	N/A	N/A	102
S-5424-CE	352	461	N/A	N/A	N/A	N/A	159.8

Guide de sélection de la taille du séparateur hélicoïdal

Se reporter à la section du même nom pour les séparateurs d'huile hélicoïdaux. Les mêmes principes sont applicables.

Installation – Recommandations

- Les séparateurs d'huile ne sont pas efficaces à 100%, c'est pourquoi ils ne doivent pas être considérés comme des outils de remplacement de pièges à huile, accumulateurs ou autres systèmes de tuyauterie pour le retour de l'huile.
- 2. Installer le séparateur d'huile verticalement et raisonnablement proche du compresseur. Mettre en place avec précaution la tuyauterie afin d'éviter des charges excessives ou des vibrations au niveau des raccords d'entrée et de sortie. Prendre garde à bien stabiliser le séparateur sur le support prévu à cet effet.
- Un clapet anti-retour doit être installé en amont du raccord de sortie afin d'empêcher la rentrée du liquide frigorigène provenant du condenseur.

SÉPARATEURS D'HUILE TRADITIONNELS

Un séparateur d'huile traditionnel extrait l'huile entraînée par le gaz comprimé et la restitue dans le compresseur de manière directe ou indirecte. Il permet donc de maintenir le niveau d'huile du carter et ainsi d'améliorer l'efficacité du système en évitant au maximum la circulation excessive d'huile dans un circuit frigorifique.

Utilisation

Les séparateurs hélicoïdaux peuvent être adaptés à de multiples usages, incluant les multi-compresseurs et les unités de condensation a distance.

La gamme de produits est conçue pour être utilisée avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Les séparateurs hélicoïdaux sont étudiés pour les systèmes de contrôle d'huile basse pression. La conception de ces produits prévoit une utilisation avec des compresseurs scroll ou alternatifs. Leur usage n'est pas recommandé avec les compresseurs à vis ou à palette.

Fonctionnement

Le fluide frigorigène chargé d'huile passe à travers un filtre à l'entrée du séparateur. Sa vitesse est alors réduite ce qui a pour conséquence de changer son moment. Les particules fines entrent en collision et forment des particules plus lourdes qui adhèrent au filtre et à la paroi intérieure du séparateur.

Le fluide traverse ensuite le filtre de sortie qui effectue la séparation finale. Une fois purifié en grande majorité, le fluide frigorigène sort du séparateur.

L'huile ainsi séparée tombe goutte à goutte au fond du séparateur où est installée une soupape à pointeau pilotée par flotteur qui permet la réinjection de l'huile dans le carter du compresseur ou le réservoir d'huile de la même façon que pour un séparateur d'huile hélicoïdal.

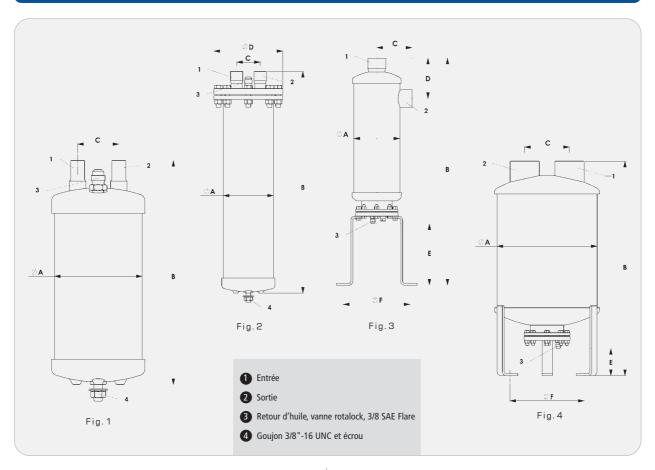
Un système convenablement choisi atteint généralement une efficacité de 80%.

Caractéristiques générales

- Faible chute de pression
- Possibilité de nettoyer/remplacer le flotteur pour les modèles S-57*, S-58* et S-19*

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 31 barg Températures de fonctionnement admissibles = -15 °C à +120 °C


Matériaux de construction

Principaux composants : l'enveloppe, les embouts et les raccords sont en acier enrichi en carbone. Le flotteur est en acier inoxydable. Le support de la soupape à pointeau est fait soit en laiton soit en acier selon le

	Dimension											
No de référence	des raccords	Ø A	В	Côtes C	(mm)	Е	Ø F	Détails du montage	Dessin de référence	Poids (kg)	Volume de précharge (l)	Cat. CE
	(pouce)		_	_	_							
S-5580	1/4 ODS	102	210	48	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	1.9	0.4	SEP
S-5581	3/8 ODS	102	210	48	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	1.9	0.4	SEP
S-5582	1/2 ODS	102	260	48	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	2.3	0.4	SEP
S-5585-CE	5/8 ODS	102	362	48	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	3.2	0.4	Cat I
S-5587-CE	7/8 ODS	102	451	48	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	3.6	0.4	Cat I
S-5588-CE	1 1/8 ODS	102	533	48	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	4.1	0.4	Cat I
S-5590-CE	1 3/8 ODS	102	540	48	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	4.5	0.4	Cat I
S-5882	1/2 ODS	102	260	48	140	N/A	N/A	3/8"- 16 UNC	fig.2	4.1	0.4	SEP
S-5885-CE	5/8 ODS	102	362	48	140	N/A	N/A	3/8"- 16 UNC	fig.2	5	0.4	Cat I
S-5887-CE	7/8 ODS	102	451	48	140	N/A	N/A	3/8"- 16 UNC	fig.2	5.5	0.4	Cat I
S-5888-CE	1 1/8 ODS	102	533	48	140	N/A	N/A	3/8"- 16 UNC	fig.2	5.9	0.4	Cat I
S-5890-CE	1 3/8 ODS	102	540	48	140	N/A	N/A	3/8"- 16 UNC	fig.2	5.9	0.4	Cat I
S-5687-CE	7/8 ODS	152	283	76	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	5.5	0.9	Cat I
S-5688-CE	1 1/8 ODS	152	391	76	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	6.8	0.9	Cat I
S-5690-CE	1 3/8 ODS	152	397	76	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	6.8	0.9	Cat I
S-5692-CE	1 5/8 ODS	152	473	76	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	8.2	0.9	Cat II
S-5694-CE	2 1/8 ODS	152	486	76	N/A	N/A	N/A	3/8"- 16 UNC	fig.1	8.6	0.9	Cat II
S-5792-CE	1 5/8 ODS	152	743	121	127	203	223	2 fentes de Ø 9/16"	fig.3	12.3	0.6	Cat II
S-5794-CE	2 1/8 ODS	152	751	117	133	203	223	2 fentes de Ø 9/16"	fig.3	12.3	0.6	Cat II
S-1901-CE	1 5/8 ODS	203	533	89	N/A	100.5	160	3 fentes de Ø 9/16"	fig.4	14.1	0.6	Cat II
S-1902-CE	2 1/8 ODS	203	533	89	N/A	100.5	160	3 fentes de Ø 9/16"	fig.4	14.5	0.6	Cat II
S-1903-CE	2 5/8 ODS	254	546	118	N/A	83	214	3 fentes de Ø 9/16"	fig.4	20	0.6	Cat II
S-1904-CE	3 1/8 ODS	305	654	141	N/A	83	269	3 fentes de Ø 9/16"	fig.4	34	0.6	Cat II

SÉPARATEURS D'HUILE TRADITIONNELS

Tables de performances

La table ci-dessous donne la puissance frigorifique en kW de chaque séparateur pour des températures d'évaporation et de condensation fixées. Cette table peut servir de référence rapide mais il est recommandé de suivre les conseils qui suivent en ce qui concerne le choix de la taille du séparateur hélicoïdal.

	Puissance frigo	rifique en kW à la te	mpérature nominale	de l'évaporateur	
No de référence	R404	A/507	R	22	Volume maximale de refoulement (m³/hr
	-40°C	5°C	-40°C	5°C	
S-5580	2.9	3.7	3.1	3.5	1.3
S-5581	3.8	4.9	4.2	4.7	1.7
S-5582, S-5882	5.7	7.4	6.3	7.1	2.6
S-5585-CE, S-5885-CE	15.2	19.7	16.8	19	6.8
S-5587-CE, S-5887-CE	22.8	29.5	25.1	28.4	10.2
S-5588-CE, S-5888-CE	30.4	39.3	33.5	37.8	13.6
S-5590-CE, S-5890-CE	38	49.2	42	47.3	17
S-5687-CE	28.5	36.9	31.4	35.4	12.8
S-5688-CE	34.2	44.2	37.7	42.5	15.3
S-5690-CE	41.8	54.1	46.1	52	18.7
S-5692-CE, S-5792-CE	53.2	68.8	58.6	66.1	23.8
S-5694-CE, S-5794-CE	85.6	110	94.3	106	38.3
S-1901-CE	68.4	88.5	75.4	84	30.6
S-1902-CE	102	132	113	127	45.9
S-1903-CE	186	240	205	231	83.3
S-1904-CE	258	334	284	321	115

1. Toutes les valeurs sont données pour une température de condensation de 38 °C, une température d'aspiration de 18 °C et une taille de raccord égale à celle du clapet de refoulement du compresseur

Guide de sélection choix de la taille du séparateur hélicoïdal

Le paramètre le plus important dans le choix du modèle est le volume de refoulement exprimé en m³/h. Il s'agit du débit volumétrique à l'entrée du séparateur d'huile, à ne pas confondre avec le volume balayé.

Une méthode rapide consiste à utiliser les tables de capacité de refoulement. Si les fluides frigorigènes HCFC et HFC sont utilisés, les tables sont valables pour les deux types de séparateurs, traditionnel et hélicoïdal. Les séparateurs traditionnels ne sont pas conçus pour fonctionner avec l'ammoniac. Par conséquent, la table du R717 ne doit pas être utilisée.

De même que dans le cas des séparateurs hélicoïdaux, lorsque le calcul du volume de refoulement nécessite une plus grande précision, il est conseillé d'utiliser la méthode de calcul du débit volumique. Cette méthode est aussi recommandée pour des utilisations particulières.

Guide de sélection du séparateur hélicoïdal à partir des tables

Afin d'utiliser les tables de sélection de décharge, le type de liquide frigorigène, les puissances frigorifiques maximale et minimale et les températures d'évaporation et de condensation doivent être connus

Exemple:

Liquide frigorigène R404A

Puissance frigorifique maximale = 100 kW

Puissance frigorifique minimale = 50 kW

Température d'évaporation = -10 °C

Température de condensation = +40 °C

A partir de la table du R404A, suivre la ligne de température d'évaporation de -10 °C jusqu'à son intersection avec la ligne de température de condensation de 40 °C. Tracer un trait à l'horizontal à partir de ce point jusqu'au facteur m³/h/kW. Multiplier ce facteur par les puissances frigorifiques maximale et minimale afin d'obtenir les volumes de refoulement.

Selon la table du R404A, le facteur $m^3/h/kW = 0.355$

Donc:

Volume de refoulement maximale = $(0, 355*100) = 35,5 \text{ m}^3/\text{h}$ Volume de refoulement minimale = $(0, 355*50) = 17,75 \text{ m}^3/\text{h}$

Les valeurs maximale et minimale calculées doivent être comparées avec la puissance nominale du séparateur hélicoïdal. Voir tables de performances des séparateurs pour obtenir les puissances nominales.

De manière générale, il est recommandé que le débit maximal ne dépasse pas la puissance nominale du séparateur. De plus, le débit minimal ne doit pas être inférieur à 33% de la puissance nominale.

Selon les résultats calculés selon les données de l'exemple, le choix du séparateur se porte soit sur le modèle S-5694-CE soit sur le SN-5794, chacun ayant une puissance nominale de 38.3 m³/h. La décision finale varie selon que l'utilisateur désire ou non un modèle de séparateur avec flotteur détachable/lavable.

Remarques complémentaires sur la sélection:-

- 1. C'est dans un souci d'optimisation qu'il est recommandé que le débit minimal soit au minimum égal à 33% de la puissance du séparateur. En dessous de ce facteur de charge, l'efficacité du séparateur est réduite. Pour les systèmes présentant des conditions extrêmes de décharge, il est préférable d'utiliser un séparateur par compresseur plutôt qu'un unique séparateur pour tout le système.
- La connaissance de la puissance frigorifique du système et des temps de fonctionnement pour les cas de pleine charge et de faible charge peut aider au choix du séparateur.
- Si le débit maximal de refoulement est légèrement dépassé et si la charge du système varie, choisir un séparateur plus petit. Le surdimensionnement n'est pas recommandé.

Installation - Recommandations

Identiques à celles concernant les séparateurs d'huile hélicoïdaux.

RÉGULATEURS MÉCANIQUES DE NIVEAU D'HUILE

La fonction d'un régulateur mécanique de niveau d'huile est de contrôler le niveau d'huile dans le carter du compresseur, protégeant ainsi le compresseur contre tout endommagement.

Il existe principalement deux types de régulateurs, à niveau fixe ou réglable.

Utilisation

Les régulateurs mécaniques de niveau d'huile sont utilisés dans les systèmes de contrôle d'huile basse pression. Ils sont conçus pour fonctionner avec des compresseurs alternatifs et ne sont pas recommandés pour les compresseurs scroll.

Tous les régulateurs peuvent être utilisés avec les fluides frigorigènes HCFC et HFC associés à leurs huiles. Les caractéristiques propres aux modèles SN permettent leur utilisation dans des applications à base d'ammoniac, de R410A et de CO_2 sous-critique.

Fonctionnement

L'huile est amenée dans le régulateur via un raccord d'entrée. A l'intérieur, une soupape à pointeau pilotée par flotteur autorise le passage de l'huile ou ferme l'accès au régulateur. Lorsque le compresseur fonctionne, le niveau d'huile du carter diminue. Cette diminution active le régulateur qui fait en sorte d'obtenir et de maintenir un niveau d'huile correct dans le compresseur.

Le régulateur réglable possède un mécanisme permettant d'ajuster la hauteur du flotteur selon les besoins. Cela permet ainsi d'ajuster le niveau d'huile dans le carter selon les recommandations du fabricant. Le régulateur fixe ne dispose pas de tel mécanisme et de ce fait l'huile du carter est maintenu à un niveau constant.

Certains modèles de régulateurs sont pourvus d'un raccord d'égalisation qui permet d'équilibrer le niveau d'huile entre plusieurs compresseurs.

Dans la plupart des cas, les régulateurs de niveau d'huile de Henry Technologies peuvent être montés directement sur le logement du voyant du compresseur. Lorsque cela n'est pas faisable, il est possible d'utiliser un adaptateur séparé. Voir table de kit d'adaptation.

Caractéristiques générales

- Dispositif de la soupape à pointeau éprouvé
- Flotteur en acier inoxydable
- Bride de montage spéciale permet l'installation directe sur compresseurs traditionnels
- Joints en néoprène de première qualité
- Kit d'adaptation de joints fournis avec chaque modèle
- Indication optique du niveau d'huile via un voyant
- Dispositif de joints toriques doubles modèle réglable
- Mécanisme de réglage facile modèle réglable

Caractéristiques techniques

Pour tous les modèles (série SN exclue):

Pressions de fonctionnement admissibles = 0 à 31 barg

Températures de fonctionnement admissibles = 0 °C à +130 °C Pour les modèle de la série SN :

Pressions de fonctionnement admissibles = 0 à 40 barg

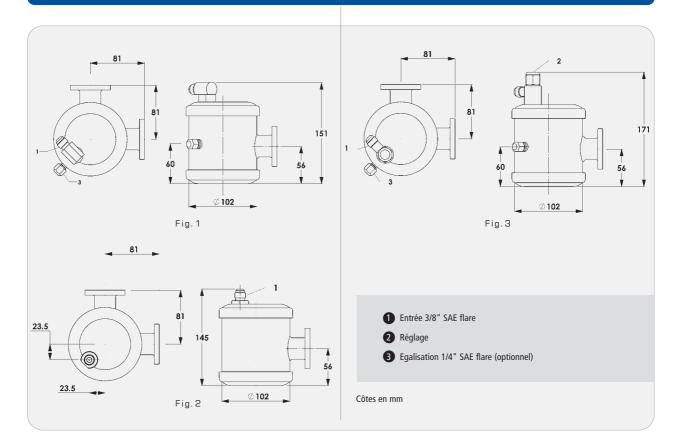
Températures de fonctionnement admissibles = -10 °C à +110 °C

Voir table des différentiels de pression admissibles pour la gamme de régulateurs Henry

Informations importantes

- Suite à la modification du système d'injection d'huile par système Venturi de Bitzer en Mai 1997, il n'est plus nécessaire d'installer une garde d'huile sur le régulateur de niveau d'huile.
- Copeland confirme qu'un niveau d'huile d'un demi voyant est acceptable plutôt qu'un quart pour tous les compresseurs reliés à un système de contrôle d'huile.

Matériaux de construction


Principaux composants : l'enveloppe, les embouts et les raccords sont en acier enrichi en carbone. Le flotteur est en acier inoxydable. Le support de la soupape à pointeau est fait soit en laiton soit en acier selon le modèle

RÉGULATEURS MÉCANIQUES DE NIVEAU D'HUILE

No de référence	Type de régulateur	Niveau d'huile (en proportion du voyant)	Egalisation	Différentiel de pression admissible, bar	Dessin de référence	MWP (barg)	Poids (kg)	Raccord du voyant du compresseur	Cat. CE
S-9510	fixe	1/2	Non	0.35 à 2.1	fig.1	31	2.20		SEP
S-9510E	fixe	1/2	Oui	0.35 à 2.1	fig.1	31	2.20		SEP
S-9510V	fixe	1/2	Non	0.35 à 2.1	fig.2	31	2.10	3 boulons de 1 7/8" B.C. et	SEP
S-9530	Réglable	1/4 à 5/8	Non	0.35 à 6.2	fig.3	31	2.30	4 boulons de 50 mm B.C.	SEP
S-9530E	Réglable	1/4 à 5/8	Oui	0.35 à 6.2	fig.3	31	2.30		SEP
SN-9530EHP	Réglable	1/4 à 5/8	Oui	0.35 à 6.2	fig.3	40	2.30		SEP

Guide de sélection

Le choix du modèle de régulateur dépend du type de liquide frigorigène utilisé, du différentiel de pression auquel sera soumis le régulateur et des préférences de l'utilisateur quant au niveau d'huile du cartel. Certains utilisateurs préfèrent la simplicité du modèle S-9510 tandis que d'autres choisissent le modèle S-9530E car il offre la possibilité d'opérer avec un différentiel de pression plus élevé ainsi que de régler et d'égaliser le niveau d'huile.

Remarque : Le différentiel de pression est la différence entre la pression du carter et la pression du réservoir. Selon le cas, la pression gravitationnelle doit aussi être ajoutée.

Installation – Recommandations

- 1. Il est recommandé d'installer une crépine, un filtre ou un filtre déshydrateur afin de protéger le régulateur des impuretés.
- 2. Le régulateur peut être installé directement sur les compresseurs à 2, 3 et 4 cylindres et la plupart des compresseurs à 6 cylindres qui utilisent des voyants normaux à 3 ou 4 boulons. Pour d'autres types de compresseurs, un adaptateur est nécessaire.
- 3. Le régulateur ne doit pas être soumis à d'excessives vibrations. Le différentiel de pression de fonctionnement doit être compris dans la plage indiquée dans les caractéristiques techniques du régulateur.
- 4. Le niveau d'huile doit être choisi et contrôlé conformément aux recommandations du fabricant.
- 5. Des instructions complètes sont données dans le mode d'emploi fourni avec chaque régulateur.

KITS D'ADAPTATION POUR RÉGULATEURS MÉCANIQUES DE NIVEAU D'HUILE

Modèle de compresseur	Configuration du voyant	No de référence du kit d'adaptation	Cat. CAT
Bitzer	4 boulons de 50 mm B.C	3-033-253 (note 1)	SEP
Bitzer Octagon	1 1/8" – 18 fileté	3-033-262	SEP
Bock	4 boulons de 50 mm B.C.	3-033-244	SEP
Bristol	15/16" – 20 fileté	3-033-242	SEP
Carrier (DA,DR,5F,5H,06D)	1 1/2" – 18 fileté	3-033-204	SEP
Carrier- Modèles (EA, ER, OBE & OBCC)	3 boulons de 1 7/8" B.C.	3-033-201	SEP
Copeland (8R & 8D)	3 boulons de 1 7/8" B.C.	3-033-212	SEP
Copeland discus (4R, 6R, 9R, MD, MR, NR)	3 boulons de 1 7/8" B.C.	3-033-201	SEP
Copeland (HA, KA, EA, 3A, LA, ER & 3R)	1 1/8" – 12 fileté	3-033-202	SEP
Dunham (Bush Big 4)	3 boulons de 1 7/8" B.C.	3-033-201	SEP
Frascold	3 boulons de 1 7/8" B.C.	3-033-201	SEP
Maneurop	1 1/8" – 18 fileté	3-033-246	SEP
Prestcold (C,E,R,L & LG)	M42 fileté	3-033-216	SEP
Prestcold (K)	1 1/8" – 12 fileté	3-033-202	SEP
Royce	3/4" NPT fileté	3-033-218	SEP
Schnacke-Grasso	2" – 16 fileté	3-033-205	SEP
Tecumseh (P,R,S,PA,RA,SA,CK,CM,CH,CG)	1 1/8" – 12 fileté	3-033-202	SEP
Trane (M,R)	3 boulons de 1 7/8" B.C.	3-033-201	SEP
Trane (K)	3/4" NPT fileté	3-033-218	SEP
York (GC,GS,JS)	3 boulons de 1 7/8" B.C.	3-033-201	SEP
Kit d'adaptation universel	N'importe laquelle	3-033-217 (Rq 2)	SEP
Kit d'adaptation d'égalisation	3 boulons de 1 7/8" B.C	3-033-226 (Rq 3)	SEP
Bitzer	4 boulons de 50 mm B.C.	A4448 (Rq 4)	SEP
Kit de joints standard	N/A	A4480 (Rq 5)	-

Remarques:-

- Garde d'huile incluse. La garde d'huile est nécessaire uniquement avec les compresseurs de la marque Bitzer fabriqués avant Mai 1907
- 2. Le kit d'adaptation comprend une bride à 3 trous qui vient se monter sur le régulateur. L'extrémité compresseur du kit est un tube en acier de 1,25" de diamètre extérieur. Il faut percer ou baguer le presse-étoupe ou la bride du voyant pour pouvoir fixer le tube de 1,25 pouce. Il suffit ensuite d'immobiliser par brasage ou soudure ce tube sur le presse-étoupe ou la bride ainsi réusinés, et d'installer le tout sur le compresseur. Ce kit contient un voyant, des sièges et toute la quincaillerie nécessaire.
- 3. Le raccord mâle de 1/4" flare du kit permet aux régulateurs non égalisés d'être interconnectés (égalisés).
- C'est un modèle moins complet que l'original 3-033-253. La garde d'huile est incluse. Ce kit est conçu pour les régulateurs de la série S-95
- 5. Ceci est le kit de joints standard fourni avec chaque régulateur de la série S-95. Il comprend non seulement les composants du kit 3-033-201 mais aussi une pièce sandwich spéciale et un joint torique pour le voyant à 4 boulons de Bitzer.

Attention : les régulateurs ne doivent pas fonctionner si le niveau d'huile est inférieur ou égal à un quart de voyant lorsqu'un adaptateur dont le diamètre est plus petit que le logement de la bride du régulateur est utilisé.

RÉGULATEURS ELECTRONIQUES DE NIVEAU D'HUILE "OPTRONIC"

La fonction d'un régulateur optronique de niveau d'huile est de contrôler le niveau d'huile dans le carter du compresseur, protégeant ainsi le compresseur contre tout endommagement.

Utilisation

Les régulateurs optroniques de niveau d'huile peuvent être utilisés avec des systèmes de contrôle d'huile basse et haute pression. Ils sont conçus pour être utilisés avec des compresseurs scroll et alternatifs.

L'utilisation de ce régulateur est approuvée pour les fluides frigorigènes HFC et les huiles POE. Pour d'autres associations liquide frigorigène/huile, merci de contacter Henry Technologies.

Fonctionnement

Le régulateur optronique contrôle si le niveau d'huile dans le carter du compresseur est supérieur ou égal à un demi voyant.

Un capteur optique surveille continuellement le niveau d'huile. Quand un niveau faible est détecté, l'approvisionnement d'huile est établi après un délai de 15 secondes afin d'assurer la stabilité du système et d'éviter de trop remplir le carter.

Une vanne électromagnétique permet d'injecter l'huile par intervalle de 3 secondes afin de minimiser le moussage. Si la demande n'est pas satisfaite après 2 minutes d'approvisionnement, une alarme de faible niveau est déclenchée au moyen d'un contact électrique à sécurité intégré.

En cas d'alarme, le régulateur continue l'approvisionnement. L'alarme s'arrêtera automatiquement lorsque le niveau d'huile retournera au niveau d'un demi voyant. Le contact alarme peut être utilisé pour arrêter le compresseur en cas de niveau d'huile faible.

Le dispositif de branchement à l'alimentation est intégré au module de contrôle électronique. Ce dernier contient un circuit imprimé qui contrôle les opérations du régulateur optronique.

Le régulateur optronique est monté sur le logement du voyant sur le compresseur et dispose d'un voyant intégral qui permet l'inspection du niveau d'huile du carter.

Caractéristiques générales

- Technologie du capteur optique brevetée#
- Conforme aux normes CE et UL
- Approuvé par les fabricants de compresseur
- Compact
- Alarme an cas de niveau faible
- Indice de protection IP54
- Branchements électriques faciles
- LED d'indication des fonctions et de l'alarme
- Dépourvu de pièces mobiles
- Joints néoprènes de première qualité
- Branchements électriques males et femelles fournis avec chaque élément
- Adaptateur scroll de 3/4" NPT fournis avec chaque élément
- Voyant pour inspection du niveau d'huile

US patent 5278426

Caractéristiques techniques

Pressions de fonctionnement admissibles : 0 à 35 barg
Différentiel de pression maximum : 24 barg
Température ambiante maximale : 45 °C
Température du fluide maximale : 80 °C

Tension d'alimentation : 24V CA 50/60 Hz

Intensité nominale de fonctionnement: 0.5 A

Branchements électriques : 4 pins M12 circulaires,

IEC60947-5-2

Contact alarme : hors tension, normalement

ouvert*

Caractéristiques du contact alarme: 24V CC / 2A, 120V CA /

2Δ

Câblage: connecteur à 4 pins

Tension d'alimentation : pins 1 et 2

Contact alarme : pins 3 et 4

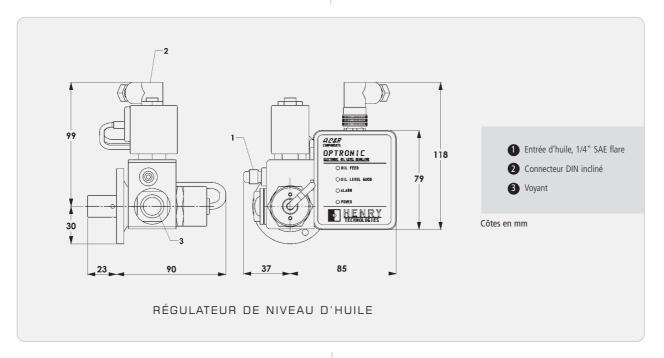
Indice de protection IP 54

Nombre de LED indicatrices des fonctions

et de l'alarme :

Raccord d'entrée d'huile : 1/4 SAE Flare Poids : 1,2 kg

Directive EMC (Label CE)


*Les contacts alarme sont fermés lorsque L'appareil est sous tension.

RÉGULATEURS ELECTRONIQUES DE NIVEAU D'HUILE

Matériaux de construction

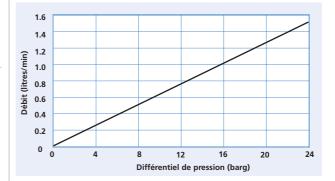
Les principales pièces de la soupape sont en acier enrichi en carbone. L'enceinte du module de contrôle électronique est fait de plastique ABS solide conforme aux normes UL.

Assemblage avec le compresseur

Chaque élément est fourni avec un adaptateur 3/4" NPT pour être assemblé avec un compresseur scroll.

Voir table pour d'autres types d'adaptateurs de compresseurs :-

	ADAPTATEURS POUR RÉGULATEURS OPTRONIQUES								
No de référence	No de référence Modèle de compresseur Détails du montage								
A4134	Bitzer Octagon	1 1/8" – 18 UNEF fileté avec joint torique							
A4221 Maneurop 1 1/8" – 18 UNEF fileté avec joint d'étanchéité en téflon									
A4382	Copeland ZR Scroll	1 1/8" – 12 UNEF fileté avec joint torique							
A4562*	Copeland & Bitzer, jusqu'à 4 cylindres	Bride à 3 et 4 boulons avec joint torique							
A4563* Copeland & Bitzer, jusqu'à 6 cylindres Bride à 3 et 4 boulons avec joint torique									
* Les adaptateurs son	t uniquement utilisables avec les compresseurs fabriqués après	Mai 1997 car ils ne possèdent pas de garde d'huile.							


Informations sur le débit

Le débit d'huile à travers le régulateur électronique dépend du différentiel de pression entre la conduite d'approvisionnement et le carter du compresseur. Selon le cas, la pression gravitationnelle doit aussi être ajoutée. La courbe ci-jointe donne une idée des débits typiques à différentes pressions.

Installation - Recommandations

- 1. Le module électronique sera endommagé si la tension d'alimentation dépasse 24 V.
- 2. L'alimentation du régulateur doit être maintenue constante lors des phases de fonctionnement, d'inactivité et d'arrêt.
- 3. Il est recommandé d'installer un filtre déshydrateur afin de protéger le régulateur des impuretés.

Pression du régulateur optronique / Débit (pour une huile minérale à 20 °C)

RÉGULATEURS ÉLECTROMÉCANIQUES DE NIVEAU D'HUILE

La fonction d'un régulateur électromécanique de niveau d'huile est de contrôler le niveau d'huile dans le carter du compresseur, protégeant ainsi le compresseur contre tout endommagement.

Il existe principalement deux types de régulateurs, à niveau fixe ou réglable.

Utilisation

Les régulateurs électromécaniques de niveau d'huile peuvent être utilisés dans les systèmes de contrôle d'huile basse pression. Les modèles à différentiel de pression élevé peuvent aussi être utilisés dans les systèmes de contrôle d'huile haute pression. Le modèle S-9030 s'installe directement sur le logement à 3 boulons du voyant du compresseur. Les modèles de la série S-9040 sont conçus pour être installé sur des logements filetés traditionnels de voyant. Tous les régulateurs peuvent être utilisés avec les fluides frigorigènes HCFC et HFC associés à leurs huiles

A cause de problèmes de moussage, il n'est pas recommandé d'utiliser ce produit dans un système à haute pression de type HCFC/huile minérale.

Fonctionnement

Le régulateur électromécanique de niveau d'huile est composé entre autre d'un contacteur à flotteur et d'une vanne électromagnétique. Le contacteur à flotteur est composé de deux contacteurs à lames magnétiques. L'un commande l'ouverture et la fermeture de la vanne électromagnétique tandis que l'autre est utilisé comme sortie alarme niveau bas. Le premier contacteur à lames est configuré afin d'obtenir le niveau d'huile désiré dans le carter.

Quand le niveau d'huile du carter diminue, le contacteur à flotteur active la vanne électromagnétique qui permet l'approvisionnement du carter en huile à travers le régulateur. Lorsque le niveau d'huile retourne à la valeur désirée, la vanne électromagnétique est fermée. Le niveau d'huile de référence peut être réglé. Le mécanisme de réglage permet à l'utilisateur de régler et de contrôler le niveau d'huile du carter.

Le deuxième contacteur à lames peut être utilisé afin d'activer une alarme et/ou d'isoler le compresseur quand le niveau d'huile chute à 1/8" (3,18 mm) sous la valeur définie par l'utilisateur. Tant que l'alarme fonctionne, la vanne électromagnétique reste ouverte.

Le niveau d'huile est réglable en ajustant manuellement la position du contacteur à flotteur. Certains modèles ont une minuterie à impulsion utilisable sur des systèmes haute pression. Ce mécanisme contrôle le débit d'injection d'huile.

Caractéristiques générales

- Modèle éprouvé
- Niveau d'huile réglable
- Alarme de faible niveau
- Contacteur à flotteur fiable
- La plupart des pièces sont remplaçables.
- Raccord d'égalisation, modèle S-9030

Caractéristiques techniques

Tension d'alimentation: 24V CA

Vanne électromagnétique : 24V CA, 6W, normalement fermée, orifice de

1,6 mm

Caractéristiques du contact alarme : 24V CA, 20VA – Valeur de service

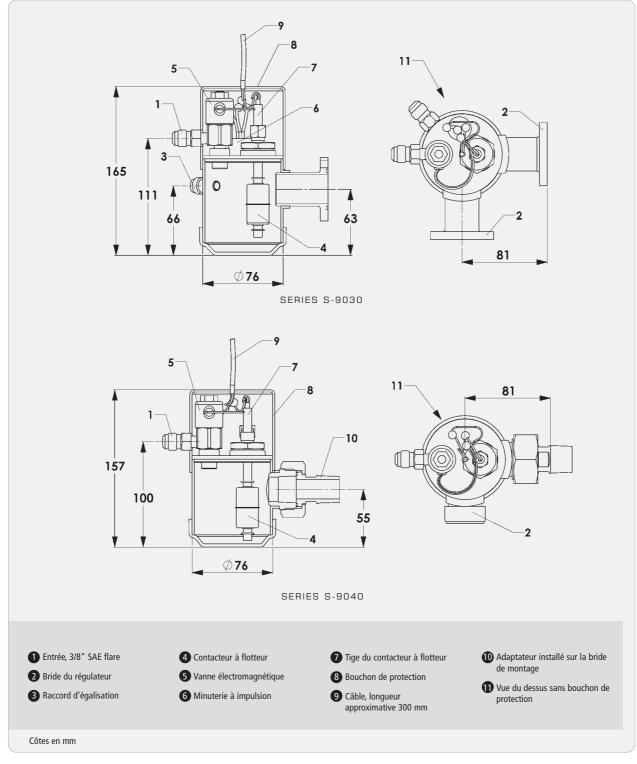
Pressions de fonctionnement admissibles = 0 à 31 barg

Températures de fonctionnement admissibles = -10 °C à +100 °C

Différentiel de pression : Voir table

Matériaux de construction

Les principaux composants du corps sont en acier enrichi en carbone. Un bouchon moulé flexible protège les raccords de la vanne électromagnétique et du contacteur.


Installation – Recommandations

- 1. Il est recommandé d'installer un filtre déshydrateur afin de protéger le régulateur des impuretés.
- 2. Le régulateur ne doit pas être soumis à d'excessives vibrations.
- 3. Le différentiel de pression de fonctionnement doit être compris dans la plage indiquée dans les caractéristiques techniques du régulateur.
- 4. Le niveau d'huile doit être choisi et contrôlé conformément aux recommandations du fabricant.
- Si la sortie du signal d'alarme est utilisée pour arrêter le compresseur, un système externe de retard doit être ajouté au circuit.

RÉGULATEURS ÉLECTROMÉCANIQUES DE NIVEAU D'HUILE

				•
No de référence	Différentiel de pression de fonctionnement (bar)	Minuterie à impulsion	Poids (kg)	Cat. CE
S-9030	0.35 - 20.7	Oui	1.84	SEP

Compresseur	Différentiel de pression de fonctionnement (bar)	Minuterie à impulsion	poids (kg)	Cat. CE
Copeland Scroll	0.35 - 6.2	Non	1.72	SEP
Copeland Scroll	0.35 - 20.7	Oui	1.72	SEP
Bitzer Octagon	0.35 - 6.2	Non	1.87	SEP
	Copeland Scroll Copeland Scroll	Compresseur fonctionnement (bar) Copeland Scroll 0.35 - 6.2 Copeland Scroll 0.35 - 20.7	Compresseur fonctionnement (bar) Minuterie a impulsion Copeland Scroll 0.35 - 6.2 Non Copeland Scroll 0.35 - 20.7 Oui	Compresseur fonctionnement (bar) Minuterie a impulsion poids (kg) Copeland Scroll 0.35 - 6.2 Non 1.72 Copeland Scroll 0.35 - 20.7 Oui 1.72

RÉSERVOIRS D'HUILE

La fonction d'un réservoir d'huile intégré dans un système basse pression est d'emmagasiner l'huile. La quantité d'huile circulant dans un système varie en fonction des conditions d'utilisation. Le réservoir d'huile pourvoit aux besoins en augmentant la capacité d'entreposage du système.

Des vannes rotalock sont fournies avec chaque réservoir afin de faciliter l'approvisionnement et la filtration de l'huile. Un raccord situé sur le dessus du réservoir permet d'installer une vanne de décompression. Les modèles disposent de deux ou trois voyants pour indiquer le niveau d'huile

Utilisation

La gamme standard de réservoirs peut être utilisée avec les fluides frigorigènes HCFC et HFC associés à leurs huiles. La série SH, du fait de sa MWP supérieure, est aussi utilisable avec les applications à base de CO_2 sous-critique.

Caractéristiques générales

- 3 tailles disponibles pour les systèmes traditionnels et haute pression.
- Construction robuste
- Tous les modèles sont fournis avec des vannes rotalock
- Voyant avec flotteur
- Double jointure sur les voyants pour éviter les fuites : joints fileté et torique
- Joints toriques de première qualité
- Modèles standard fournis avec pieds de fixation
- Eléments de montage disponibles pour les systèmes haute pression

Caractéristiques techniques

Pour les modèles standards:

Pressions de fonctionnement admissibles : 0 à 31 barg

Températures de fonctionnement admissibles : -10 °C à +130 °C

Pour les modèles SH:

Pressions de fonctionnement admissibles : 0 à 40 barg

Températures de fonctionnement admissibles : -10 °C à +110 °C

Matériaux de construction

L'enveloppe, les embouts et les raccords sont en acier enrichi en carbone.

Guide de sélection

Les deux gammes de réservoirs de Henry Technologies ont des contenances approximatives de 7,5, 11,5 et 15 litres.

La contenance requise dépend de nombreux facteurs propres au système comme le schéma de tuyauterie utilisée pour le retour de l'huile, le type, le nombre et la durée de fonctionnement des compresseurs, etc.

Pour des systèmes parallèles à un étage, une méthode simple de sélection peut être utilisée. Pour d'autres systèmes, merci de contacter Henry Technologies. La méthode de sélection utilise le volume balayé théorique du compresseur, Vh, comme indicateur de la contenance d'huile nécessaire.

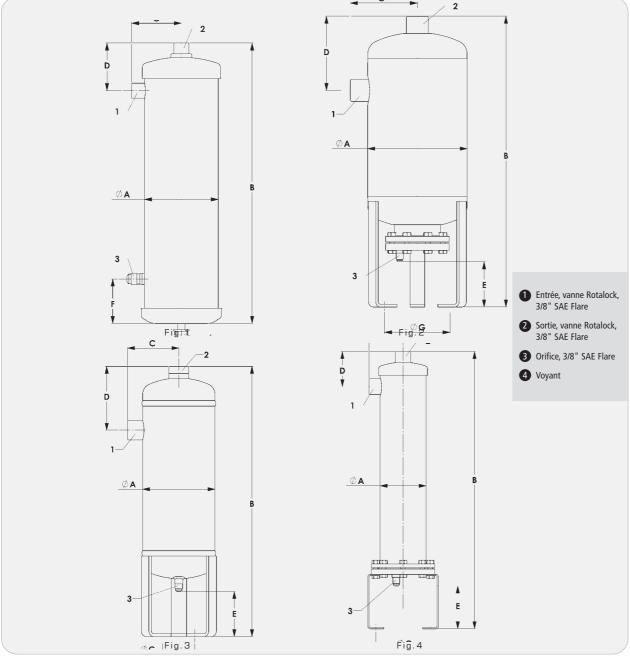
Exemples:-

8 compresseurs ont chacun un volume balayé théorique de 17 m³/h.

Donc Vh (total) = $136 \text{ m}^3/\text{h}$

Le modèle choisi est le S-9109-CE avec un Vh allant jusqu'à 150 m³/h. Voir table de sélection.

Remarque: Certains utilisateurs choisissent la contenance du réservoir d'huile suivant d'autres méthodes que celle indiquée ci-dessus ou d'après leur expérience. Cette méthode est donnée à titre indicatif. En cas de doute, choisir une contenance plus élevée.


Installation - Recommandations

1. Des instructions complètes sont données dans le manuel d'instruction fourni avec chaque réservoir.

No de référence		Contenance du réservoir pour	les dimensions données (litres)	
No de reference	D	E	F	Α
S-9109-CE	2.8	2.8	N/A	6.9
S-9108U-CE	2.8	6.6	N/A	10.7
S-9108-CE	2.8	5.2	5.2	14.5
SH-9109-CE	3.5	2.8	N/A	8.2
SH-9108U-CE	3.5	6.6	N/A	12
SH-9108-CE	3.5	5.2	5.2	15.8

N 1 (f)			Côt	es (mm)			Dessin de	5:1 (1)		6 . 65
No de référence	Α	В	С	D	Е	F	référence	Poids (kg)	MWP (barg)	Cat. CE
S-9109-CE	426	507	152	177	165	N/A	fig.1	9	31	Cat II
S-9108U-CE	654	736	152	177	394	N/A	fig.1	12.5	31	Cat II
S-9108-CE	883	965	152	177	311	311	fig.2	15	31	Cat II
SH-9109-CE	522	604	152	225	165	N/A	fig.3	9	40	Cat II
SH-9108U-CE	751	832	152	225	394	N/A	fig.3	12.5	40	Cat II
SH-9108-CE	980	1061	152	225	311	311	fig.4	15	40	Cat II

TABLE DE SÉLECTION DES RÉSERVOIRS D'HUILE		
No de référence	Contenance (litres)	Vh, total (m3/h)
S-9109-CE	6.9	Jusqu'à 150
S-9108U-CE	10.7	150-300
S-9108-CE	14.5	300-400
SH-9109-CE	8.2	Jusqu'à 150
SH-9108U-CE	12	150-300
SH-9108-CE	15.8	300-400
Remarque: Vh = somme des volumes balayés des compresseurs du système		

CLAPETS TARÉS POUR RÉSERVOIR

La fonction du clapet taré est de contrôler la pression du réservoir d'huile.

Utilisation

Un clapet taré est utilisé dans les systèmes de contrôle d'huile basse pression. Il évacue la pression du réservoir d'huile tout en maintenant un différentiel de pression positif entre le réservoir et le carter du compresseur. Cette surpression garantit un approvisionnement en huile suffisant des régulateurs de niveau d'huile. Le clapet taré est relié à la conduite d'aspiration.

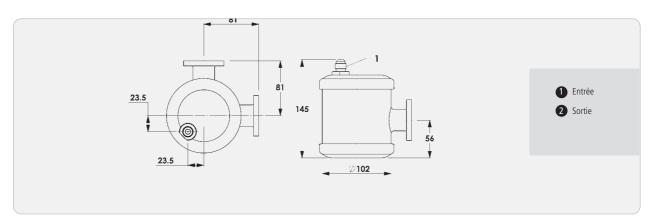
Ces clapets peuvent être utilisés avec les fluides frigorigènes HCFC et HFC associés à leurs huiles.

Caractéristiques générales

- Modèle éprouvé
- 3 pressions de tarage différentes
- Joint néoprène de première qualité

Caractéristiques techniques

Pressions de fonctionnement admissibles : 0 à 40 barg


Températures de fonctionnement admissibles : -10 °C à +120 °C

Matériaux de construction

Les pièces formant le corps du clapet sont en laiton, le ressort en acier inoxydable et le joint en néoprène.

No de référence	Dunasian da tauana (haua)	Taille du raccor	d (pouce)	Daide (lea)	Cat. CE
No de reference	Pression de tarage (barg)	Entrée	Sortie	Poids (kg)	Cat. CE
S-9104	0.35 Constant	3/8" SAE Flare Femelle	3/8" SAE Flare Mâle	0.13	SEP
S-9104H	1.4 Constant	3/8" SAE Flare Femelle	3/8" SAE Flare Mâle	0.13	SEP
S-9104XH	2.4 Constant	3/8" SAE Flare Femelle	3/8" SAE Flare Mâle	0.13	SEP

CLAPET TARÉ POUR RÉSERVOIR

Guide de sélection

Les modèles S-9104, S-9104H et S-9104XH permettent d'obtenir des différentiels de pression respectivement de 0,35, 1,4 et 2,4 barg

Un différentiel de pression plus élevé augmentera le débit d'huile du réservoir vers le compresseur

L'utilisateur doit choisir un modèle en tenant compte des pressions individuelles des carters des compresseurs et des plages de différentiels de pression des régulateurs d'huile. Si le phénomène de moussage présente un problème, ne pas utiliser le modèle S-9104XH.

VANNES D'ARRÊT POUR RÉGULATEUR D'HUILE

La fonction d'une vanne d'arrêt est d'offrir la possibilité d'isoler un composant. Des modèles horizontaux et verticaux sont disponibles.

Utilisation

Ces vannes sont placées sur les raccords d'admission d'huile et sur la conduite d'égalisation des régulateurs de niveau d'huile de Henry Technologies. Cela permet ainsi d'isoler les régulateurs lorsqu'il faut assurer la révision d'un compresseur, d'un régulateur de niveau d'huile, d'un filtre, etc.

Les vannes peuvent être utilisées avec les fluides frigorigènes HCFC et HFC associés à leurs huiles.

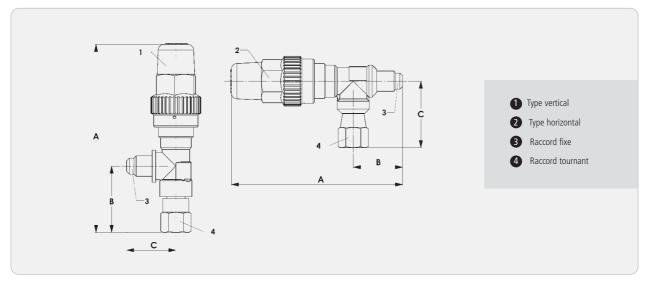
Sur demande, les vannes peuvent être fournies avec une plage de pression de fonctionnement plus élevée pour les applications à base de C02 sous-critique et de R410A.

Caractéristiques générales

- Deux possibilités de montage horizontal et vertical
- Positionnement sur 360° via raccord pivot

Caractéristiques techniques

Pressions de fonctionnement admissibles : 0 à 34,5 barg


Températures de fonctionnement admissibles : -10 °C à +100 °C

Matériaux de construction

Le corps et l'écrou de rotule sont en laiton. La tige est en acier plaqué. Le bouchon d'étanchéité de la tige est en plastique moulé.

No de référence	1	Dimensions (mm	1)	Туре	Poids (kg)	Cat. CE		
No de reference	Fixe	Tournant	Α	В	С	туре	roius (kg)	Cat. CL
S-9106E	1/4 SAE Flare	1/4 SAE Flare Femelle	102	37	27	Vertical	0.14	SEP
S-9106H	3/8 SAE Flare	3/8 SAE Flare Femelle	92	27	39	Horizontal	0.16	SEP
S-9106V	3/8 SAE Flare	3/8 SAE Flare Femelle	104	39	32	Vertical	0.17	SEP
S-9106EH	1/4 SAE Flare	1/4 SAE Flare Femelle	92	27	36	Horizontal	0.15	SEP

VANNES D'ARRÊT POUR RÉGULATEUR D'HUILE

FILTRE (A TAMIS ACIER) A HUILE

La fonction d'un filtre à tamis acier est d'extraire de l'huile les impuretés du système. Le but est de protéger les compresseurs et les régulateurs de niveau d'huile contre tout endommagement.

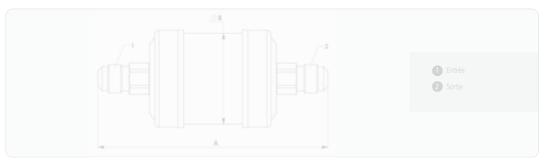
Utilisation

Les filtres à tamis acier de la série S-91 de Henry Technologies peuvent être utilisées dans des systèmes de contrôle d'huile basse pression et haute pression. Les crépines peuvent être utilisées avec les fluides frigorigènes HCFC et HFC associés à leurs huiles..

Bien que le filtre à tamis acier soit compatible avec les associations HFC/Liquide frigorigène POE/huile, Henry Technologies recommande plutôt l'usage d'un filtre à huile ou d'un filtre déshydrateur en raison de la nature absorbante de l'huile POE

De meilleurs systèmes de protection seront obtenus en utilisant un filtre à huile ou un filtre déshydrateur plutôt qu'un filtre à tamis acier.

En règle générale, un filtre à tamis acier est installée immédiatement en amont d'un régulateur mécanique de niveau d'huile afin de protéger des impuretés la vanne à pointeau pilotée par flotteur. En retour, le compresseur est protégé contre tout endommagement.



Caractéristiques techniques

Pressions de fonctionnement admissibles : 0 à 34,5 barg

THIS PAGE HAS NOW BEEN UPDATED.
PLEASE REFER TO THE 'OIL MANAGEMENT'
SECTION OF THE WEBSITE FOR THE LATEST
ENGLISH INFORMATION

	ord (pouce)		mm)	Caractéristiq	ues du tamis		Cat CE	
Entrée	Sortie	А	Ø B	Superficie (mm ²)	Maille	Polas (kg)	Cat. CE	
3/8" SAE Flare	3/8" SAE Flare	129	51		100	0.37	SEP	
3/8 ODS	3/8 ODS	103	51	7095	100	0.33	SEP	
	Entrée 3/8" SAE Flare	3/8" SAE Flare 3/8" SAE Flare	Entrée Sortie A 3/8" SAE Flare 3/8" SAE Flare 129	Entrée Sortie A Ø B 3/8" SAE Flare 3/8" SAE Flare 129 51	Entrée Sortie A Ø B Superficie (mm²) 3/8" SAE Flare 3/8" SAE Flare 129 51 7095	Entrée Sortie A Ø B Superficie (mm²) Maille 3/8" SAE Flare 3/8" SAE Flare 129 51 7095 100	Entrée Sortie A Ø B Superficie (mm²) Maille 3/8" SAE Flare 3/8" SAE Flare 129 51 7095 100 0.37	

FILTRE A HUILE

Installation – Recommandations

- Le filtre à tamis acier doit être installée de telle sorte que l'écoulement suit le même sens que la flèche dessinée sur le produit
- Il est recommandé d'installer des vannes de chaque côté du filtre à tamis acier pour faciliter son remplacement, au cas où le tamis serait bouché.

FILTRES À HUILE ET DÉSHYDRATEUR

La fonction d'un filtre à huile est d'extraire de l'huile les impuretés d'un système. La fonction d'un filtre déshydrateur est d'extraire de l'huile les impuretés d'un système et de la déshydrater. Le but est de protéger les compresseurs et les régulateurs de niveau d'huile contre tout endommagement.

Utilisatior

Le filtre à huile S-4004 et le filtre déshydrateur S-4005 de Henry Technologies peuvent être utilisés dans des systèmes de contrôle d'huile basse et haute pression.

Tous les modèles peuvent être utilisés avec les fluides frigorigènes HCFC et HFC associés à leurs huiles.

Les propriétés uniques de déshydratation du modèle S-4005 conviennent tout particulièrement aux systèmes à huile POE. Ce type d'huile est plus hygroscopique que l'huile minérale. De ce fait, elle absorbe plus vite l'humidité. Dans un système frigorifique, l'humidité peut engendrer un certain nombre de problèmes et/ou créer des conditions nuisibles.

Un modèle S-4004 ou S-4005 peut être monté sur la conduite de retour d'huile entre le séparateur et le réservoir d'huile, au lieu d'installer un filtre à tamis acier pour chaque régulateur de niveau d'huile. De plus, ces modèles enlèvent davantage d'impuretés que les crépines traditionnelles.

Caractéristiques générales

Modèle S-4004

- Débit important et faible chute de pression
- Superficie importante du filtre
- Filtre micronique
- Elimine le besoin d'inclure des crépines sur la conduite de retour d'huile

Modèles S-4005 et SH-4005

- Haut débit et faible chute de pression
- Large superficie du filtre
- Filtre micronique
- Déshydratation élevée
- Elimine le besoin d'inclure des crépines sur la conduite de retour d'huile

Caractéristiques techniques

Modèle S-4004

Pressions de fonctionnement admissibles : 0 à 31 barg

Températures de fonctionnement admissibles : -10 °C à +100 °C

Superficie du filtre 3065 cm²

Filtration = 10 microns

Modèle S-4005

Pressions de fonctionnement admissibles : 0 à 31 barg

Températures de fonctionnement admissibles : -10 °C à +100 °C

Superficie du filtre 3000 cm²

Filtration = 6 microns

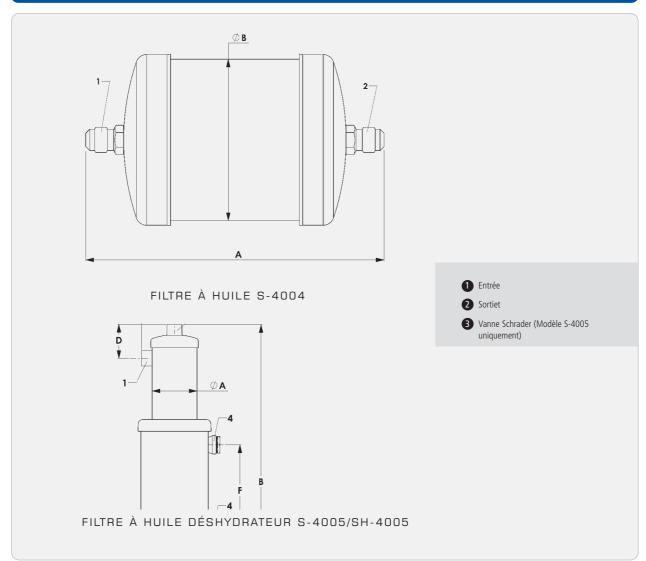
Déshydrateur = 131 cm³ de dessicant XH9

Modèle SH-4005

Identique au modèle S-4005 sauf

Pressions de fonctionnement admissibles : 0 à 40 barg

Installation - Recommandations


- Les filtres à huile et les filtres déshydrateurs doivent être installés de telle sorte que l'écoulement suit le même sens que la flèche dessinée sur le produit.
- 2. Les produits doivent être remplacés si une chute de pression de plus de 1 barg (15 psig) a été enregistrée. L'ajout de vannes Schrader de chaque côté de l'élément permet d'enregistrer les chutes de pression. Il est recommandé d'installer des vannes de chaque côté de la crépine pour faciliter son remplacement, au cas où le filtre serait bouché.
- 3. Pour les systèmes de contrôle d'huile basse pression, les filtres à huile et les filtres déshydrateurs doivent être situés entre le séparateur et le réservoir d'huile et non pas entre le réservoir et le régulateur d'huile.

COMPOSANTS D'UN SYSTÈME DE CONTRÔLE D'HUILE

Entrée Sortie A Ø B S-4004 3/8" SAE Flare 3/8" SAE Flare 188 102 1.93 31 SEP	No de référence	Diamètre du ra	occord (pouce)	Côte	s (mm)	Poids (kg)	MWP (barg)	Cat. CE
S-4004 3/8" SAE Flare 3/8" SAE Flare 188 102 1.93 31 SEP	no de reference	Entrée	Sortie	Α	ØВ	Tolus (kg)	mirr (burg)	cut. CL
	S-4004	3/8" SAE Flare	3/8" SAE Flare	188	102	1.93	31	SEP

No de référence	Diamètre du raccord (pouce)		Côtes	(mm)	Poids (kg)	MWP (barg)	Cat. CE
	Entrée	Sortie	Α	ØВ			
S-4005	3/8" SAE Flare	3/8" SAE Flare	251	76	1.55	31	SEP
SH-4005	3/8" SAE Flare	3/8" SAE Flare	251	76	1.55	40	SEP

NOTES

CAPTEURS DE NIVEAU DE LIQUIDE

La fonction d'un capteur de niveau de liquide est de détecter et contrôler les niveaux de liquide.

Utilisation

Le capteur de niveau peut être installé sur bon nombre d'emplacements dans un système frigorifique comme par exemple dans les réservoirs de liquide, les bouteilles anti-coup de liquide et les carters des compresseurs.

La gamme est conçue pour être utilisée avec les fluides frigorigènes HCFC, HFC et l'ammoniac associés à leurs huiles. Un contacteur de niveau à raccord de 1" NPT est recommandé pour les applications à base d'ammoniac. Pour d'autres associations liquide frigorigène/huile, merci de contacter Henry Technologies.

Fonctionnement

Les capteurs électriques de niveau de la série S-94 utilisent la réflexion de la lumière infrarouge d'un prisme en verre conique pour détecter l'absence de fluide à la hauteur du cône en verre. Le module infrarouge fait partie intégrante du contacteur de niveau et comprend un émetteur et un récepteur.

Lorsque le fluide ne couvre pas la moitié inférieure du cône, la lumière infrarouge de l'émetteur est réfléchie de la surface intérieure du cône vers le récepteur. Cela indique au module de commuter. Lorsque le fluide couvre la moitié inférieure du cône, la lumière provenant de l'émetteur est dispersée dans le fluide. L'absence de lumière réfléchie est détectée par le récepteur et le module commute dans l'autre sens.

Caractéristiques générales

- Technologie de capteur optique brevetée#
- Conception robuste
- Remplaçable sans perte de liquide frigorigène
- Dépourvu de pièces mobiles
- Joint hermétique obtenu par fonte du verre
- Fils volants et connecteur DIN en option

#US patent 5278426

Caractéristiques techniques

Pressions de fonctionnement admissibles: 0 à 35 barg Températures de fonctionnement admissibles: -40 °C à 99 °C

Montage: Horizontal uniquement

Tension d'alimentation : Voir table

Puissance nominale des contacteurs : $$\tt 36\ VA-valeur\ nominale \]$

de service

Durée de vie des contacts : plus d'un million de cycles

à la charge électrique

nominale

Puissance opérationnelle : 3,5 mA CA, 5,5 mA CC
Charge minimale : 2 mA (sans résistance de

fuite)

Intensité nominale résistive : Voir table

Contacts, hors tension: Normalement ouvert

(N.O.)

Contacts, sous tension: Voir table

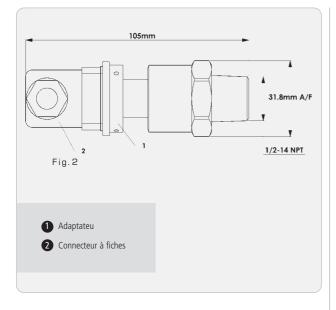
(En présence de liquide)

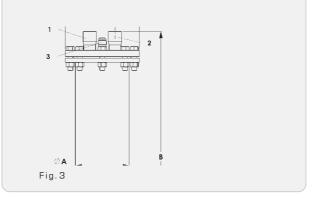
Interface client : Voir table

Matériaux de construction

Le contacteur est formé d'un corps en acier plaqué avec à l'intérieur un prisme en verre fondu.

** No de	Tension	Intensité	Contacts en			Dessin de		Côte		No de	Poids	
référence	d'alimentation	nominale résistive	présence de liquides	Interface client	Codes de couleur des fils	référence	A (Montage fileté)	B Sur plat (mm)	C (mm)	remplacement du module	(kg)	Cat. CE
S-9400	120V 50/60 HZ	0.5 A	N.F.	Fils volants	Jaune et Blanc	fig.1	1/2" NPT	28.6	192	2-044-012	0.22	SEP
S-9420	208/240V 50/60 HZ	0.25A	N.F.	Fils volants	Rouge et Blanc	fig.1	1/2" NPT	31.8	192	2-044-015	0.22	SEP
S-9420A	208/240V 50/60 HZ	0.25A	N.O.	Fils volants	Bandes Rouges et Blanches	fig.1	1/2" NPT	31.8	192	2-044-018	0.22	SEP
S-9424	24V CA/CC	0.5A	N.F.	Fils volants	Orange et Blanc	fig.1	1/2" NPT	31.8	192	2-044-013	0.22	SEP
S-9424A	24V CA/CC	0.5A	N.O.	Fils volants	Bandes Oranges et Blanches	fig.1	1/2" NPT	31.8	192	2-044-020	0.22	SEP


**Un raccord de 1" NPT est disponible à la demande uniquement pour la série S-9400. Il suffit d'ajouter le suffixe « -1 » (exemple : S-9424-1). Remarque : L'appareil doit être câblé entre le conducteur noir et le conducteur de couleur.


Remarque : Les capteurs de niveau à raccord de 1" NPT en option permettent au produit d'être monté de façon à être plus proche des parois de l'appareil. Cela élimine la possibilité d'avoir un bain de liquide à côté du prisme en verre qui nuirait aux performances. Un contacteur de

niveau à raccord de 1" NPT est recommandé pour des applications à base d'ammoniac où des résidus peuvent s'accumuler sur le prisme en verre.

No de référence	Tension d'alimentation	Intensité nominale résistive	Contacts en présence de liquides	Interface client	Codes de couleur des fils	Dessin de référence	No de remplacement du moduler	Poids (kg)	Cat. CE
S-9420DN	208/240V 50/60 HZ	0.25 A	N.F.	prise DIN	Rouge et Blanc	fig.2	2-044-015	0.23	SEP
S-9424DN	24V CA/CC	0.5 A	N.F.	prise DIN	Orange et Blanc	fig.2	2-044-013	0.23	SEP
S-9424-3/4UK	24V CA/CC	0.5A	N.F.	fiche DIN	Orange et Blanc	fig.3	2-044-013	0.23	SEP
Remarque : l'ann	Remarque : L'appareil doit être câblé entre le conducteur noir et le conducteur de couleur.								

Installation - Recommandations

- Installer le capteur de niveau horizontalement. Si le produit est monté de travers ou verticalement, le liquide peut être retenu causant des problèmes de commutation.
- 2. S'assurer l'absence de tout objet situé à une distance inférieure à 50 mm du prisme de verre.
- 3. Les schémas de câblage sont fournis dans le manuel d'instruction.
- 4. Il n'est pas conseillé d'utiliser les contacteurs avec des liquides très sales.
- 5. Des instructions complètes sont données dans le manuel d'instruction fourni avec chaque produit.

RAMPES DE VANNES

La fonction d'une rampe de vannes est de simplifier la tuyauterie, de réduire le nombre de raccords et de permettre l'isolation d'équipements pendant leur fonctionnement.

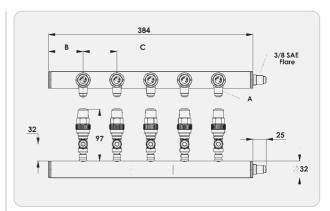
Utilisation

La rampe de vannes est conçue pour être utilisée avec les liquides frigorigènes HCFC et HFC associés à leurs huiles.

Les rampes peuvent être utilisées sur des conduites d'huile ou de liquide frigorigène..

Caractéristiques générales

- Entièrement assemblée et testée réduit le temps d'assemblage pour le client
- •Installation facile via raccords flare
- Nombre d'articulations mécaniques réduit
- Structure flexible 3 à 8 logements de vannes disponibles
- Corps en acier robuste


Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 27,5 barg

Températures de fonctionnement admissibles = -10 $^{\circ}$ C à +100 $^{\circ}$ C

Matériaux de construction

Le tube de la rampe, les corps des vannes et leur tige sont respectivement en acier enrichi en carbone, en laiton et en acier enrichi en carbone plaqué. Le bouchon d'étanchéité des vannes est en plastique moulé.

RAMPE DE VANNES

No de référence	Nb de vannes	A SAE Flare	B (mm)	C hauteur (mm)	Poids (kg)	Cat. CE
FP003-1/4	3	1/4 Flare	65	127	1.15	SEP
FP003-3/8	3	3/8 Flare	65	127	1.15	SEP
FP004-1/4	4	1/4 Flare	52	80	1.28	SEP
FP004-3/8	4	3/8 Flare	52	80	1.28	SEP
FP005-1/4	5	1/4 Flare	65	63.5	1.40	SEP
FP005-3/8	5	3/8 Flare	65	63.5	1.40	SEP
FP006-1/4	6	1/4 Flare	92	40	1.53	SEP
FP006-3/8	6	3/8 Flare	92	40	1.53	SEP
FP008-1/4	8	1/4 Flare	52	40	1.77	SEP
FP008-3/8	8	3/8 Flare	52	40	1.77	SEP

RAMPES DE VANNES ÉLECTROMAGNÉTIQUES

La fonction d'une rampe de vannes est de contrôler l'écoulement de l'huile ou du liquide frigorigène.

Utilisation

La rampe de vannes électromagnétiques est conçue pour être utilisée avec les liquides frigorigènes HCFC et HFC associés à leurs huiles.

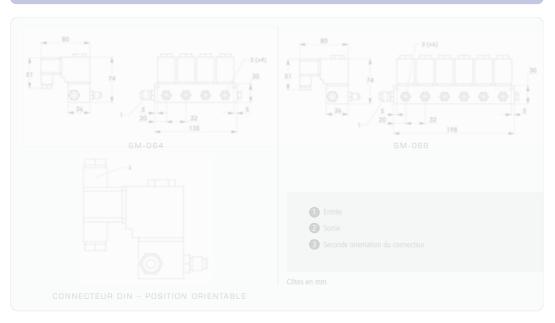
Les rampes peuvent être utilisées sur des conduites d'huile ou de liquide frigorigène.

Caractéristiques générales

- Rampe à 4 ou 6 voies
- Label CE
- Indice de protection IP 65
- Branchement électrique facile via connecteurs DIN
- Conception solide et compacte

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 40 barg


empératures de fonctionnement admissibles = -25°C à +60°C

'TH

'THIS PAGE IS NOW OBSOLETE.'

		Dimensions des	raccords (pouce)				
No de référence	Nb de sorties	Entrée	Sortie	Tension d'alimentation	Poids (kg)	Cat. CE	
SM-064	4	3/8 SAE Flare	1/4 SAE Flare	24V CA	1.58	SEP	
SM-069	6	3/8 SAE Flare	1/4 SAE Flare	24V CA	2.27	SEP	

BOUTEILLES ANTI-COUP DE LIQUIDE

La fonction première d'une bouteille anti-coup de liquide est de prévenir une élévation brusque du débit de liquide frigorigène ou d'huile qui retournerait dans le compresseur via la conduite d'aspiration. La bouteille anti-coup de liquide est un réservoir temporaire pour le liquide frigorigène et l'huile.

La bouteille anti-coup de liquide est conçue pour assurer le retour du liquide frigorigène et de l'huile dans le compresseur à un débit contrôlé, protégeant le compresseur contre tout endommagement. Le dosage des quantités de liquide frigorigène et d'huile retournant dans le compresseur permet de conserver l'efficacité du système et de maintenir des niveaux d'huiles raisonnables dans le carter. Des bouteilles anti-coup de liquide verticales et horizontales sont disponibles. Des modèles à échangeur thermique (HE) et à pompe de chaleur (HP) sont aussi disponibles..

Utilisation

Les bouteilles anti-coup de liquide sont installées sur des systèmes de réfrigération et de conditionnement d'air lorsque une élévation brusque du débit d'un liquide est à craindre. La gamme de produit est conçue pour être utilisée avec les fluides frigorigènes HCFC et HFC associés à leurs huiles.

Fonctionnement

Un mélange de fluide frigorigène gazeux avec du liquide ou de l'huile, entre dans la bouteille anti-coup de liquide. La sortie de chaque bouteille est conçue de telle sorte que la vapeur du fluide frigorigène retourne dans le compresseur. Dans le cas d'un récipient horizontal, la position du raccord de sortie assure le retour de la vapeur. Dans le cas d'un récipient vertical, le retour de la vapeur est accompli au moyen d'un système de tube en U. Certains modèles utilisent un autre système composé d'un tube inséré dans un autre tube plus large. Le liquide repose sur la partie inférieure de la bouteille prêt à être dosé et renvoyé dans le compresseur.

Dans le cas des bouteilles horizontales, le liquide est dosé et retourné au compresseur via un tube plongeur. Dans le cas des modèles verticaux, le liquide est dosé et retourné au compresseur via un orifice disposé au fond du tube et sur lequel est installé un tamis. La vapeur transporte le liquide dosé vers le compresseur. Le dosage du liquide ne survient que lorsque le compresseur est en marche.

Caractéristiques générales

- Empêche les coups de liquide
- Retour du liquide contrôlé
- Capacité de débit élevé
- Faible chute de pression
- Orifice protégé par un tamis sur les modèles verticaux
- Echangeur thermique et pompe de chaleur en options

Caractéristiques techniques

S-76 series:

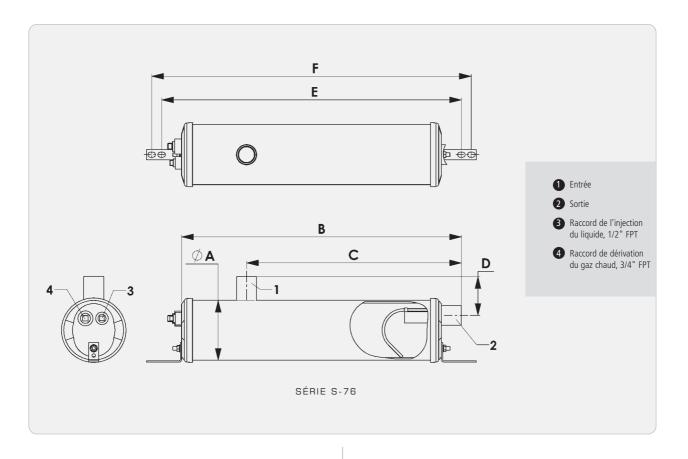
MWP = 20.8 barg à +100 °C

Série S-704 (valable pour tous les modèles), S-7061-CE à S-7065-CE (sauf les modèles HE), S-7721-CE à S-7725-CE (sauf les modèles HE) :

MWP = 31 barg à +100 °C

Série S-705 (valable pour tous les modèles), S-7061-CE à S-7065-CE (modèles HE), tous les autres modèles de la série S-77

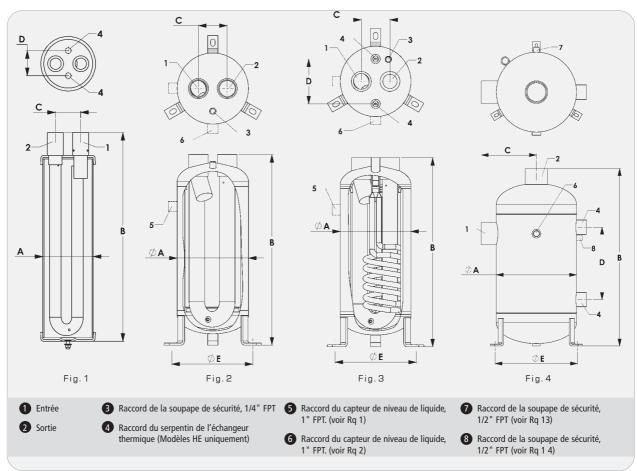
MWP = 31 barg à +130 °C


Remarque : Pour des températures de fonctionnement en dessous de -10 °C, tous les modèles ont une MWP non nominale. Pour plus d'informations, merci de contacter Henry Technologies.

Matériaux de construction

L'enveloppe et les embouts sont en acier enrichi en carbone. Les dérivations sont en acier ou en cuivre.

Référence No	Dimensions des raccords (pouce)		Côtes (mm)							Cat. CE
		ØΑ	В	С	D	E	F	Détails du montage		
S-7615-CE	1 5/8 ODS	152	711	546	99	762	812	4 fentes de Ø12.7mm	13	Cat II
S-7621-CE	2 1/8 ODS	152	933	768	100	984	1035	4 fentes de Ø12.7mm	17	Cat II
S-7625-CE	2 5/8 ODS	152	1270	1105	105	1320	1371	4 fentes de Ø12.7mm	21	Cat II



	No De Référen		Dimensions des			Côtes (mr	n)		Détails du montage	Dimensions des raccords	Dessin de	Poids (kg	Cat. CE
	No De Referen	Le	raccords (pouce)	Α	В	С	D	E (Ø)	Details du montage	de la bobine de l'échangeur thermique	référence	roius (kg	Cat. CE
S-7043	-	-	5/8 ODS	102	168	48	N/A	N/A	3/8-16 Goujon et écrou	N/A	fig.1	2	SEP
S-7044	-	S-7044-HP	1/2 ODS	102	264	48	N/A	N/A	3/8-16 Goujon et écrou	N/A	fig.1	2.5	SEP
S-7045	-	S-7045HP	5/8 ODS	102	264	48	N/A	N/A	3/8-16 Goujon et écrou t	N/A	fig.1	2.5	SEP
-	S-7045HE	-	5/8 ODS	102	264	64	64	N/A	3/8-16 Goujon et écrou	3/8 ODS	fig.1	2.5	SEP
S-7046	-	S-7046HP	3/4 ODS	102	270	48	N/A	N/A	3/8-16 Goujon et écrou t	N/A	fig.1	2.5	SEP
-	S-7046HE	-	3/4 ODS	102	270	64	64	N/A	3/8-16 Goujon et écrou t	3/8 ODS	fig.1	2.5	SEP
S-7057-CE	S-7057HE-CE	S-7057HP-CE	7/8 ODS	127	330	57	70	N/A	3/8-16 Goujon et écrou	1/2 ODS	fig.1	5	CAT I
S-7061-CE	S-7061HE-CE	S-7061HP-CE	1 1/8 ODS	152	381	76	73	N/A	M10 ou 3/8-16 Goujon et écrou t	5/8 ODS	fig.1	8	CAT I
S-7063-CE	S-7063HE-CE	S-7063HP-CE	1 3/8 ODS	152	630	76	73	N/A	M10 ou 3/8-16 Goujon et écrou t	5/8 ODS	fig.1	12	CAT II
S-7065-CE	S-7065HE-CE	S-7065HP-CE	1 5/8 ODS	152	630	76	73	N/A	M10 ou 3/8-16 Goujon et écrou t	3/4 ODS	fig.1	13	CAT II
S-7721-CE	-	-	2 1/8 ODS	219	588	89	140	282	3 trous de Ø14mm x 22mm	N/A	fig.2	22	CAT II
-	S-7721HE-CE	-	2 1/8 ODS	219	588	89	140	282	3 trous de Ø14mm x 22mm	7/8 ODS	fig.3	22	CAT II
S-7722-CE	-	-	2 1/8 ODS	219	588	89	140	282.7	3 trous de Ø14mm x 22mm	N/A	fig.2	22	CAT II
-	S-7722HE-CE	-	2 1/8 ODS	219	588	89	140	282.7	3 trous de Ø14mm x 22mm	7/8 ODS	fig.3	22	CAT II
S-7725-CE	-	-	2 5/8 ODS	273	578	118	140	338.5	3 trous de Ø14mm x 22mm	N/A	fig.2	34	CAT II
-	S-7725HE-CE	-	2 5/8 ODS	273	578	118	140	338.5	3 trous de Ø14mm x 22mm	1 3/8 ODS	fig.3	34	CAT II
S-7726-CE	-	-	2 5/8 ODS	273	578	118	140	336.6	3 trous de Ø14mm x 22mm	N/A	fig.2	34	CAT III
-	S-7726HE-CE	-	2 5/8 ODS	273	578	118	140	336.6	3 trous de Ø14mm x 22mm	1 3/8 ODS	fig.3	34	CAT III
S-7731-CE	-	-	3 1/8 ODS	324	635	140	149	387.4	3 trous de Ø14mm x 22mm	N/A	fig.2	50	CAT III
-	S-7731HE-CE	-	3 1/8 ODS	324	635	140	149	387.4	3 trous de Ø14mm x 22mm	1 3/8 ODS	fig.3	50	CAT III
S-7732-CE	-	-	3 1/8 ODS	324	635	140	149	387.4	3 trous de Ø14mm x 22mm	N/A	fig.2	50	CAT III
-	S-7732HE-CE	-	3 1/8 ODS	324	635	140	149	387.4	3 trous de Ø14mm x 22mm	1 3/8 ODS	fig.3	50	CAT III
S-7741-CE	S-7741HE-CE	-	4 1/8 ODS	406	902	279	368	470	3 trous de Ø14mm x 22mm	2 5/8 ODS	fig.4	102	CAT III
S-7742-CE*	-	-	4 1/8 ODS	508	1130	330	N/A	457.2	4 trous de Ø16.3mm sur base carrée	N/A	fig.4*	130	CAT IV

Remarques (à lire conjointement avec la légende des dessins)
Pour les emplacements du capteur de niveau de liquide et de la soupape de sécurité, voir les remarques ci-dessous pour les modèles appropriés

- 1. Modèles S-7722, S-7722HE & S-7726 2. Modèles S-7726HE, S-7732, S-7732HE, S-7741, S-7741HE & S-7742 3. Modèles S-7741HE 4. Modèles S-7741 & S-7742

No de référence		enance e ène (en k	n fluide g à -18 °C)		Pui	ssance fr	igorifique	recomma	ındée en l	kW pour l	e fluide 1	frigorigèn	e donné à	ı la tempé	rature d'	évaporat	ion de l'a	spiration.	(°C)
reference	R134a	R22	R404A				R134a			R22				R404A / R507					
					5°	-7°	-18°	-29°	-40°	5°	-7°	-18°	-29°	-40°	5°	-7°	-18°	-29°	-40°
S-7615-CE	10.6	10	8.8	MAX	53	35		eilles hor		102	70		eilles hor		100	57	Les bou	teilles ho	rizontales
S-7621-CE	14.4	13	11.9	MAX	101	69		ent être u températ		176	106		ent être u températ		173	117			utilisées à inférieure
S-7625-CE	21.2	19	17.6	MAX	176	123		eures à -		334	229		eures à -		328	217	ues temp	à -10 °C	
S-7043	1	1	0.7	MAX	3.2	2.3	1.5	1	0.6	6.3	4.5	3.1	2.1	1.3	6.3	4.3	2.8	1.8	1.1
3-7043	'	'	0.7	MIN	0.7	0.6	0.5	0.4	0.3	0.9	0.8	0.7	0.6	0.7	0.9	0.7	0.6	0.5	0.4
S-7044	2	1.9	1.7	MAX	1.6	1.2	0.8	0.5	0.6	3.2	2.3	1.6	1.0	0.7	3.1	2.2	1.5	0.9	0.6
5-7044	2	1.9	1.7	MIN	0.3	0.2	0.2	0.2	0.1	0.5	0.4	0.3	0.2	0.2	0.5	0.3	0.3	0.2	0.2
C 704F	2	1.9	1.7	MAX	3.2	2.3	1.5	1	0.6	6.4	4.5	3.1	2.1	1.3	6.3	4.3	2.8	1.8	1.1
S-7045	2	1.9	1.7	MIN	0.7	0.6	0.5	0.4	0.3	0.9	0.8	0.7	0.6	0.4	0.9	0.7	0.6	0.5	0.4
S-7046	2	1.9	1.7	MAX	4.5	3.1	2.1	1.4	0.8	8.8	6.2	4.2	2.8	1.8	8.7	5.9	3.8	2.5	1.5
5-7046	2	1.9	1.7	MIN	0.9	0.7	0.6	0.5	0.4	1.2	1	0.8	0.7	0.6	1.3	1	0.8	0.6	0.5
S-7057-CE	4.2	3.9	3.5	MAX	7.7	5.4	3.6	2.3	1.4	15.2	10.7	7.1	4.7	3	14.9	10.2	6.5	4.2	2.6
3-7037-CE	4.2	3.9	3.3	MIN	1.3	1.1	0.9	0.7	0.6	1.8	1.6	1.3	1.1	0.9	1.8	1.5	1.2	1	0.7
S-7061-CE	5.8	5.4	4.9	MAX	16.3	11.4	7.3	4.8	2.9	32	22.8	14.4	9.7	6.1	31.4	21.7	13.2	8.6	5.2
3-7001-CE	5.8	5.4	4.9	MIN	2.1	1.8	1.5	1.2	1	3	2.5	2.2	1.8	1.4	2.9	2.4	2	1.6	1.2
c 7062 cr	0.0	0.4	0.2	MAX	27.8	18.8	12	7.6	4.7	54.9	37.7	23.8	15.6	10	53.9	35.9	21.8	13.8	8.6
S-7063-CE	9.9	9.1	8.3	MIN	4.4	3.7	3.1	2.5	2	6.1	5.1	4.4	3.6	2.9	6	4.9	4	3.2	2.5
S-7065-CE	9.9	9.1	8.3	MAX	49.3	33.8	21.1	13.4	8.2	96.8	67.6	41.5	27.4	17.5	95	64.1	38	24.3	15
3-7003-CE	9.9	9.1	8.3	MIN	7.6	6.3	5.3	4.4	3.5	10.5	8.8	7.6	6.4	5.1	10.3	8.4	7	5.7	4.4
S-7721-CE	14.7	13.6	12.3	MAX	109	70.4	49.3	26.4	17.6	204	141	91.5	63.4	42.2	201	134	84.5	56.3	35.2
3-//21-CE	14.7	13.0	12.3	MIN	14.1	12.3	10.6	8.8	7	21.1	19.4	15.8	14.1	10.6	21.1	17.6	14.1	12.3	8.8
S-7722-CE	14.7	13.6	12.3	MAX	109	70.4	49.3	26.4	17.6	204	141	91.5	63.4	42.2	201	134	84.5	56.3	35.2
3-//22-CE	14.7	13.0	12.3	MIN	14.1	12.3	10.6	8.8	7	21.1	19.4	15.8	14.1	10.6	21.1	17.6	14.1	12.3	8.8
C 7735 CF	22	20	18.2	MAX	172	113	75.7	42.2	22.9	313	215	144	98.6	54.6	308	204	132	88	47.5
S-7725-CE	22	20	18.2	MIN	21.1	19.4	15.8	12.3	3.5	31.7	29.9	24.6	22.9	5.3	31.7	28.2	22.9	21.1	5.3
S-7726-CE	22	20	18.2	MAX	172	113	75.7	42.2	22.9	313	215	144	98.6	54.6	308	204	132	88	47.5
3-//20-CE	22	20	18.2	MIN	21.1	19.4	15.8	12.3	3.5	31.7	29.9	24.6	22.9	5.3	31.7	28.2	22.9	21.1	5.3
c 7724 cr	26.4	22.2	20	MAX	253	194	130	84.5	33.4	465	324	215	141	82.7	456	308	197	125	70.4
S-7731-CE	36.4	33.2	30	MIN	35.2	31.7	24.6	22.9	5.3	54.6	45.8	40.5	33.4	8.8	52.8	44	37	29.9	8.8
C 7722 CF	26.4	22.2	20	MAX	253	194	130	84.5	33.4	465	324	215	141	82.7	456	308	197	125	70.4
S-7732-CE	36.4	33.2	30	MIN	35.2	31.7	24.6	22.9	5.3	54.6	45.8	40.5	33.4	8.8	52.8	44	37	29.9	8.8
S-7741-CE	62	61	55	MAX	401	259	156	107	69.7	792	510	306	211	137	757	503	320	201	116
3-//41-CE	02	וס	22	MIN	109	89.4	75.7	59.8	47.2	151	125	109	86.6	31.7	174	113	73.9	45.8	24.6
C 7742 CF	127	126	111	MAX	401	259	156	107	69.7	792	510	306	211	137	757	503	320	201	116
S-7742-CE	127	126	114	MIN	109	89.4	75.7	59.8	47.2	151	125	109	86.6	31.7	174	113	73.9	45.8	24.6

Guide de sélection

La bouteille anti-coup de liquide doit avoir une contenance appropriée. En temps normal, celle-ci ne doit pas être inférieure à 50% de la charge totale du système.

Le concepteur du système doit vérifier que les puissances frigorifiques minimale et maximale du système sont dans les limites d'utilisation de la bouteille anti-coup.

Les puissances frigorifiques minimale et maximale sont indiquées dans la table. Les puissances maximales sont déterminées selon la perte de charge de la bouteille et les caractéristiques du retour de l'huile. La perte de charge équivaut à 1/2 °C. Les puissances minimales servent à assurer un retour de l'huile correct

Exemple:

Liquide frigorigène R404A

Puissance frigorifique maximale du système = 170 kW

Puissance frigorifique minimale du système = 65 kW

Température d'évaporation = -18 °C

Charge du système = 55 kg

La bouteille anti-coup recommandée est le modèle S-7731-CE dont la contenance en liquide frigorigène est de 30 kg et le rapport puissance minimale/maximale est de 37/197 kW.

Informations supplémentaires sur la sélection d'un modèle

Les modèles à échangeur thermique peuvent être utilisés sur des systèmes à basse température afin de sous refroidir la conduite liquide en même temps qu'ils aident à vaporiser le fluide frigorigène dans la bouteille anti-coup en faisant passer la conduite du liquide par le serpentin de l'échangeur thermique. Ne pas utiliser le gaz de refoulement dans le serpentin de l'échangeur thermique car les compresseurs risquent de surchauffer.

Les systèmes à pompe de chaleur doivent utiliser les modèles de bouteille anti-coup HP. Un chauffage hivernal peut provoquer un retour trop important de liquide frigorigène dans le compresseur. Les bouteilles anti-coup à pompe de chaleur possèdent un orifice plus petit pour empêcher tout écoulement de liquide excessif.

Deux bouteilles anti-coup peuvent être placées en série à l'aide d'une conduite pour augmenter la contenance. L'huile est alors mesurée d'un compresseur à l'autre pour assurer un écoulement correct de l'huile vers le compresseur. Ajouter une deuxième bouteille anti-coup identique double efficacement la contenance d'une unique bouteille anti-coup.

Placer en parallèle deux bouteilles anti-coup double la puissance frigorifique. Deux bouteilles anti-coup identiques doivent être utilisées.

Sur les systèmes à basse température (-18°C ou inférieure), un collier chauffant doit être installé afin d'aider à vaporiser le liquide frigorigène et de faciliter l'écoulement de l'huile. Ne pas trop chauffer sous peine de surchauffer le compresseur.

Les bouteilles anti-coup horizontales ne doivent pas être utilisées lorsque la température du liquide frigorigène est inférieure à -10°C.

Installation - Recommandations

- 1. Installer la bouteille anti-coup après le filtre de la conduite d'aspiration.
- 2. Un bouchon fusible est monté sur le dessous du récipient sur les modèles de la série S-70 HE. Pour les autres modèles, un raccord pour soupape de sécurité est installé sur le dessus du récipient. L'utilisateur doit s'assurer que le récipient est protégé contre toute surpression. Une surpression peut apparaître si le liquide frigorigène est évaporé par exemple à cause d'un feu externe.
- 3. Les colliers chauffant doivent être installés sur le dessous d'une bouteille anti-coup verticale et à l'extrémité de la sortie d'une bouteille anti-coup horizontale.

SILENCIEUX DE REFOULEMENT

La fonction d'un silencieux de refoulement est de réduire le bruit dans la conduite de refoulement d'un système de réfrigération ou de conditionnement d'air.

Utilisation

Le silencieux est conçu pour être installé directement après le compresseur. La gamme de produits est conçue pour être utilisée avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Fonctionnement

Le silencieux réduit le bruit causé par les pulsations du gaz en lui permettant de se dilater dans les chambres du silencieux. Les silencieux disposent de déflecteurs internes conçus pour amortir les ondes sonores du gaz du compresseur à basse et haute fréquence

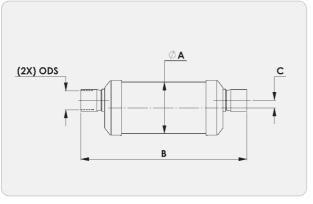
Principales caractéristiques

- Conception solide
- Ecoulement bidirectionnel

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 31 barg

Températures de fonctionnement admissibles = 0 °C à +120 °C (Modèles SEP)

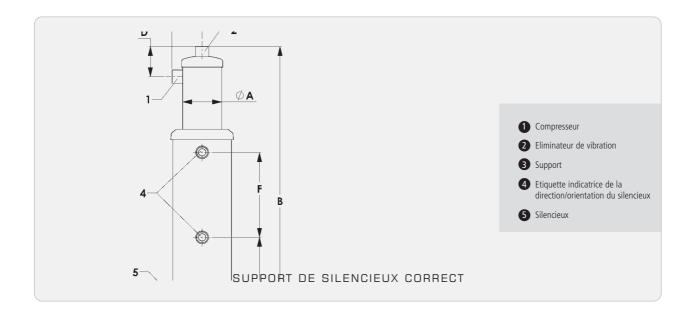

Températures de fonctionnement admissibles = -15 °C à +120 °C (Modèles Cat I)

Matériaux de construction

Le corps et les déflecteurs internes sont en acier enrichi en carbone. Les raccords sont en acier plaqué enrichi en carbone.

Numéro de référence	ODS (pouce)		Côte (mm)		Poid (kg)	Cat CE
Numero de reference	OD3 (pouce)	Ø A	В	С	Fold (kg)	Cat CL
S-6304	1/2	76	197	19	1.06	SEP
S-6305	5/8	76	197	19	1.08	SEP
S-6307	7/8	76	246	11	1.25	SEP
S-6311	1 1/8	76	246	11	1.32	SEP
S-6404	1/2	102	171	24	1.62	SEP
S-6405	5/8	102	171	24	1.62	SEP
S-6406	3/4	102	178	24	1.62	SEP
S-6407	7/8	102	178	24	1.62	SEP
S-6411-CE	1 1/8	102	324	24	2.30	Cat I
S-6413-CE	1 3/8	102	349	24	2.62	Cat I
S-6415-CE	1 5/8	102	464	19	3.35	Cat I
S-6415M-CE	42mm	102	464	19	3.35	Cat I
S-6621-CE	2 1/8	152	533	32	8.20	Cat I
S-6625-CE	2 5/8	152	533	25	9.00	Cat I
S-6631-CE	3 1/8	152	568	19	9.00	Cat I

SILENCIEUX DE REFOULEMENT


Guide de sélection

Choisir un silencieux dont la taille de raccord correspond ou dépasse celle de la conduite de refoulement. Les silencieux dont la taille est plus élevée ont tendance à réduire davantage de pulsations du fait de leur volume interne plus grand.

Installation - Recommandations

- Les silencieux dont le diamètre extérieur est de 102 ou 152 mm disposent d'un bouchon de 1/8 NPT. Le bouchon peut être enlevé pour installer une soupape de sécurité.
- 2. Installer le silencieux aussi près que possible du compresseur et avant le séparateur d'huile.
- 3. Lorsque le silencieux est monté dans une position horizontale ou inclinée, le côté où se trouve l'étiquette doit être tourné vers le haut afin d'éviter tout amas d'huile dans le silencieux. L'huile à l'intérieur du silencieux réduit les performances et entraîne une perte d'huile dans le compresseur. Le fait d'incliner légèrement le silencieux de telle sorte que l'orifice de sortie se trouve sous l'orifice d'entrée aide aussi à ne pas amasser d'huile.
- 4. Un éliminateur de vibration doit être installé entre le compresseur et le silencieux pour éviter la transmission des vibrations. Le silencieux doit être maintenu de chaque côté pour éviter de faire vibrer la conduite de refoulement à cause du poids du silencieux.

- 5. Les silencieux éliminent uniquement le bruit dû aux pulsations du gaz de refoulement. Si les vibrations sont responsables du bruit, des éliminateurs de vibration doivent être ajoutés à la conduite de refoulement et dans certains cas à la conduite d'aspiration.
- 6. Il est possible d'installer un seul silencieux sur une conduite d'aspiration ordinaire. Cependant, certains clients préfèrent installer un silencieux par compresseur sur des crémaillères placées en parallèle.

 \square

RÉDUCTION DES VIBRATIONS

La fonction d'un éliminateur de vibrations est d'absorber les vibrations du compresseur. En installant un éliminateur de vibrations, les risques d'endommager les composants du système et la tuvauterie sont réduits.

Chaque unité se compose d'un tuyau flexible ondule recouvert d'une tresse en acier inoxydable. Le tuyau et la tresse sont renforcés à l'aide de férules à chaque extrémité et sont connectés aux extrémités de tuyaux en cuivre au moyen d'un alliage à braser à haute température.

Caractéristiques techniques

Pressions de fonctionnement admissibles = voir table

Températures de fonctionnement admissibles = -40 °C à 120 ° (Modèles V)

Températures de fonctionnement admissibles = -40 °C à 100 °C (Modèles VF)

'THIS PAGE HAS NOW BEEN UPDATED. PLEASE REFER TO THE 'LINE COMPONENTS' SECTION OF THE WEBSITE FOR THE LATEST ENGLISH INFORMATION.'

- Large diametre interieur du tuyau flexible
- Tuvau flexible et tresse en acier inoxydable
- Férules en acier inoxydable pour une résistance accrue
- Etanchéité testée avec l'hélium
- Label CE
- Norme UL (Modèles V uniquement)

ELIMINATEUR DE VIBRATION

Tresse en acier inoxydable
 Tuyau flexible ondulé en acier inoxydable

Numéro De Référence	ODS (pouce)	А	В	С	Diamètre intérieur du tuyau	MWP (barg)	Poids (kg)	Cat Cl
V-1/4	1/4	205	14	17	6	34.5		SEP
V-3/8	3/8	218	19	20	10	34.5	0.12	SEP
V-1/2	1/2	229	22	20	13	34.5	0.14	SEP
V-5/8	5/8	251	26	22	16	34.5	0.20	SEP
V-3/4	3/4	268	29	28	19	34.5	0.23	SEP
V-7/8	7/8		32		22	34.5	0.28	SEP
V-1-1/8	1 1/8	332	38	38	29	34.5	0.40	SEP
V-1-3/8	1 3/8		46	40		34.5	0.63	
V-1-5/8	1 5/8	429	57		41	34.5		Cat I
V-2-1/8	2 1/8	524	68	60	54	26.9	1.25	Cat I
V-2-5/8	2 5/8	618	87	76	67	23.4	2.40	Cat I
V-3-1/8	3 1/8	684	107	85	79	20.7	3.95	Cat l
V-3-5/8	3 5/8	818	132	100	92	12.1	6.00	Cat I
VE-3-5/8-CB-CE	3 5/8	686	126		89	22.8	4.30	Cat I
V-4-1/8	4 1/8	837	132	110	105	12.1	6.70	Cat I
VE-4-1/8-CB-CE	4 1/8		136	114		22.8		

Installation – Recommandations

- L'éliminateur de vibration doit être fixé aussi près que possible du compresseur et doit être installé de façon à ce qu'il soit droit. Les éliminateurs de vibrations ne sont pas conçus pour compenser les mauvais alignements de la tuyauterie.
- Faire attention à allouer suffisamment d'espace à l'éliminateur de vibration afin d'éviter une tension ou une compression statique, après le brasage. Les éliminateurs de vibration ne sont pas conçus pour absorber les contraintes axiales et de torsion
- Les éliminateurs de vibration doivent être installés perpendiculairement au sens des vibrations. Lorsque des vibrations sont présentes sur deux plans, deux éliminateurs de vibration doivent être utilisés. Voir figures 1 et 2.
- Pour une absorption optimale des vibrations, le tuyau du liquide frigorigène doit être ancré à l'éliminateur de vibration le plus éloigné de la source des vibrations.
- 5. Prendre des précautions toutes particulières pour installer des éliminateurs de vibration horizontalement sur des conduites d'aspiration ou lorsque les températures de fonctionnement se situent en dessous du point de congélation. De la condensation peut apparaître à l'extérieur de l'unité et, si cette dernière est installée verticalement, elle peut s'accumuler sur la bague inférieure de la tresse. Par la suite, la congélation de cet élément peut entraîner la déformation ou la destruction de l'unité. Si une installation verticale est la seule option, ou si la condensation est possible sur un montage horizontal, la section flexible comprenant

FIG 1 SYSTÈME SIMPLE

'THIS PAGE HAS NOW BEEN UPDATED.
PLEASE REFER TO THE 'LINE COMPONENTS'
SECTION OF THE WEBSITE FOR THE LATEST
ENGLISH INFORMATION.'

VOYANTS

La fonction d'un voyant est de permettre une inspection visuelle des niveaux de liquide.

Utilication

Les voyants sont utilisés dans les systèmes de réfrigération et de conditionnement d'air avec un liquide frigorigène ou une huile.

Les voyants de la série SG-12 peuvent être utilisés avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Les voyants des séries SG-10 et SG-11 peuvent être utilisés avec les fluides frigorigènes HFC, HCFC et l'ammoniac associés à leurs huiles

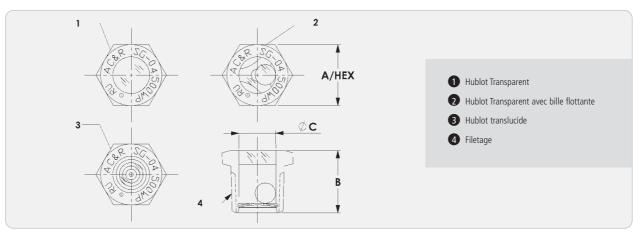
Principales caractéristiques

- 3 types de hublot Reflex, Transparent, Transparent avec bille flottante
- Joint hermétique obtenu par fonte du verre

Pressions de fonctionnement admissibles = 0 à 34,5 barg

Séries SG-10 et SG-11:

Températures de fonctionnement admissibles = - 40 °C à +163 °C


Série SG-12

Températures de fonctionnement admissibles = - 40 °C à +94 °C

Matériaux de construction

Le voyant se compose d'un corps en acier plaqué dans lequel est inséré un hublot en verre fondu. Sur la série S-12 sont aussi installés un tamis en acier inoxydable et une bille flottante en plastique.

VOYANTS

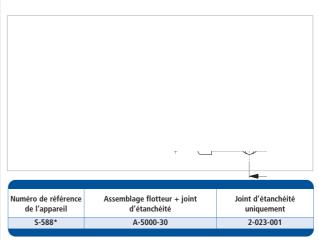
	Référence No		Filetage (NPT)		Côtes (mm)		Poids (kg)	Cat CE
Transparent	Reflex	*Transparent avec bille flottante		A Hex	В	øс	Total (kg)	cut CL
SG-1004	SG-1104	SG-1204	1/2	23.9	24.3	14.3	0.03	SEP
SG-1006	SG-1106	SG-1206	3/4	28.4	26.9	19.1	0.06	SEP
SG-1008	SG-1108	SG-1208	1	35.1	33.6	23.8	0.12	SEP
SG-1010-CE	SG-1110-CE	SG-1210	1 1/4	44.5	35	30.2	0.20	SEP (Cat II)#
SG-1012-CE	SG-1112-CE	SG-1212-CE	1 1/2	50.8	35.9	33.4	0.29	Cat I (Cat II) #
SG-1016-CE	SG-1116-CE	SG-1216-CE	2	63.5	36.1	41.4	0.46	Cat I (Cat II) #

*La série ne convient pas pour un usage avec de l'ammoniac.

#Les Cat. CE entre parenthèses indiquent la classification pour l'ammoniac.

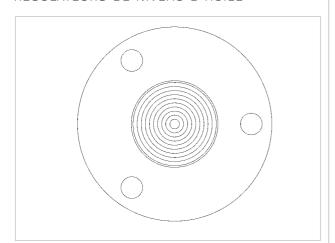
Installation - Recommandations

1. Eviter de serrer trop fort le voyant pour éviter de le fissurer.



PIÈCES DE RECHANGE

SÉPARATEURS D'HUILE


Numéro de référence de l'appareil	Assemblage flotteur + joint d'étanchéité	Joint d'étanchéité uniquement
S-520* S-190* S-541* SN-529* S-529* S-290*	A-2900-30	2-023-001
Numéro de référence de l'appareil	Assemblage flotteur + joint d'étanchéité	Joint d'étanchéité uniquement
S-528* S-579*	A-5700-30	2-023-001

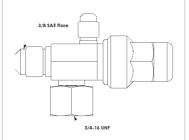
Numéro de référence de l'appareil S-579* 3-010-301 2-023-001			`
S-579* 3-010-301 2-023-001	référence de	Cartouche de tamis de rechange	Joint d'étanchéité de rechange
	S-579*	3-010-301	2-023-001

RÉGULATEURS DE NIVEAU D'HUILE

Numéro de référence	Description
2-020-006	Voyant à hublot Reflex
S81-3-125	Joint torique
2-023-003	Joint 4 lobes
A4480	Kit de joint traditionnel (Remarque 1)

Remarque 1: Il s'agit du kit traditionnel de joints fourni avec chaque régulateur de la série S-95. Il comprend des boulons, des écrous, des joints toriques et à 4 lobes ainsi qu'une pièce sandwich spéciale avec un joint torique pour sceller un voyant Bitzer à 4 boulons.

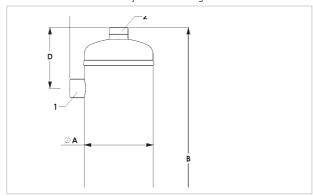
RÉSERVOIRS D'HUILE



Ancien voyant 3-020-011 (1.25 A/F Hex) Joint torique S81-3-213

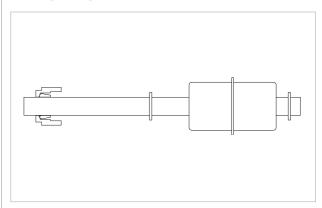
Remarque : Ce voyant a été remplacé par la référence No 3-020-079 en 2003.

Nouveau voyant 3-020-079 (1.50 A/F Hex) Joint torique S81-3-123

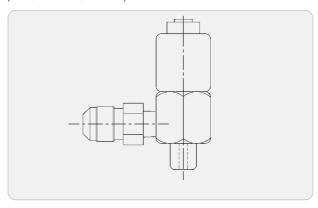

3/8 SAE Vanne rotalock Valve 2-030-122 Joint d'étanchéité en téflon A8604

RÉSERVOIR

Vanne Rotalock horizontale et joints de rechange



0	ODS ou raccord flare
2	Raccord Rotalock
3	Orifice de service (1/4 SAE Flare)

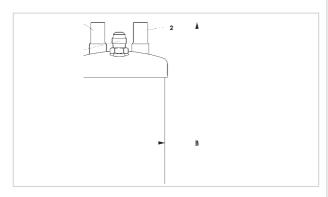

No de référe	nce de la vanne	Ø	a		N - 1 (f (
Raccord	du corps	raccord du corps	Ø raccord Rotalock (pouce)	Cat. CE	No de référence du joint	
ODS	Flare	ODS/Flare (pouce)	Rotalock (pouce)		uu joint	
48396-P	-	1/4				
48397-P	2-030-122	3/8	3/4 -16	SEP	A8604	
-	A4509	3/8				
48511-P	A8544	1/2	1 -14	SEP	A8605	
48294-P	A8548	5/8		JL.	70003	
48295-P	-	7/8	1 1/4 -12	SEP	A8624	
48461-P	-	1 1/8	1 1/-4 - 12	321	A0024	
48680-P	-	1 3/8	1 3/4 -12	SEP	A3386	

REMARQUE : L'A4509 est une pièce de rechange pour les modèles S-53** de séparateurs avec réservoir inclus et a son orifice de service incliné de 30° par rapport au plan horizontal

RÉGULATEURS ÉLECTROMÉCANIQUES DE NIVEAU D'HUILE

Kit de contacteur piloté par flotteur des modèles S-9030/S9040 (No de référence 3-044-016)

Kit de vanne électromagnétique des modèles S-9030/S9040


(No de référence 3-044-017

Numéro de référence	Description	Modèles de régulateur
3-044-016	Kit de contacteur piloté par flotteur	\$9030/40
3-044-017	Kit de vanne électromagnétique	\$9030/40
SG-1006	Voyant translucide	\$9040
SG-1106	Voyant Reflex	\$9040

ACCESSOIRES

INDICATEURS DE NIVEAU DE LIQUIDE POUR RÉSERVOIRS

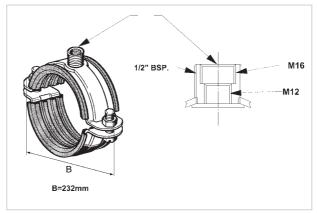
D!\tau d(\	
Diamètre du réservoir (mm)	Cat CE
219	Cat IV
273	Cat IV
324	Cat IV
356	Cat IV
406	Cat IV
457	Cat IV
508	Cat IV
ange disponible pour tous les indicateurs A4	456
	219 273 324 356 406 457 508

RÉSISTANCES CHAUFFANTES

Les résistances chauffantes renforcent le chauffage des séparateurs d'huile afin d'éviter la migration du liquide frigorigène vers le récipient pendant les cycles d'arrêt du compresseur.

Les résistances chauffantes dont le diamètre est de 4" peuvent être installées sur le carter des séparateurs d'huile des séries suivantes: S-520*, S-190*, S-541*, SN-529*, S-529*, S-290*, S-528* et S-579*.

Les résistances chauffantes peuvent aussi être utilisées sur les bouteilles anti-coup de liquide pour chauffer l'huile et permettre le retour de l'huile vers le compresseur pour les applications à basse température.


Numéro de référence	Diamètre du récipient (pouce)	Consommation (W)	Volts (V)
S-9101	4	25	110 CA
S-9111	4	25	220 CA
S-9112	6	50	220 CA

FIXATIONS POUR LES RÉCIPIENTS DE DIAMÈTRE 6" (152 MM)

Ces attaches conviennent pour les réservoirs à haute pression dont le diamètre est de 6 pouces.

La capacité de serrage s'étend d'un diamètre de 148 à 154 mm. Les écrous et les boulons sont fournis séparément.

Les pièces de métal des attaches sont en acier galvanisé et disposent d'un habillage pour l'absorption acoustique.

Numéro de référence. A4494

NOTES

VANNES À BOISSEAU SPHÉRIQUE

Utilisation

Les vannes à boisseau sphérique sont utilisées dans une large variété d'applications pour la réfrigération et le conditionnement d'air. Elles peuvent être utilisées avec des liquides ou avec des gaz. Ce type de vanne est généralement utilisé à des fins d'isolement. Toutes les vannes à boisseau sphérique peuvent être utilisées avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Principales caractéristiques

Caractéristiques de construction

- Ecoulement bidirectionnel
- Un indicateur sur la tige montre la position de la vanne ouverte ou fermée
- Entièrement ouverte ou fermée en un quart de tour de tige
- Les butées positives de la tige assurent un positionnement précis en position ouverte ou fermée
- Tige a l'épreuve d'un éclatement
- Cavite de la bille mise a l'air libre pour éviter toute surpression
- Bouchon d'étanchéité mis a l'air libre

'THIS PAGE HAS NOW BEEN UPDATED. PLEASE REFER TO THE 'VALVES' SECTION OF THE WEBSITE FOR THE LATEST ENGLISH INFORMATION.'

Caracteristiques techniques

Températures de fonctionnement admissibles = - 40 °C à + 120 °C

Pressions de fonctionnement admissibles = 0 à 40 barg.

Matériaux de construction

Les composants ; le corps de la vanne, l'adaptateur pour le corps de la vanne, la bille et le bouchon d'étanchéité sont en laiton. La tige est en acier plaqué. Les rallonges de la conduite sont en cuivre. Les joints de la bille sont en PTFE vierge, les joints toriques de la tige et le bouchon d'étanchéité sont en néoprène.

valille a noisseau shiletildae ae ia sette so.

Installation - Recommandations

Le corps de la vanne doit être protégé contre tout chauffage excessif afin de ne pas endommager les joints. Des instructions complètes sont données dans le mode d'emploi fourni avec chaque vanne

Numéro	de référence											
Traditionnel	Vanne Schrader	ODS (pouce)		А	В	С	D	Détails du filetage des trous du plan de pose - 2 off	de l'orifice (mm)	Poids (kg)	MWP (Barg)	Cat CE
907202	937202	1/4		165	16	55	8	Pas de 8-36 UNF-2B X 20 mm	12.70	0.34	40	SEP
907203	937203	3/8		165	16	55	8	Pas de 8-36 UNF-2B X 20 mm	12.70	0.34	40	SEP
907204	937204	1/2		165	16	55	10	Pas de 8-36 UNF-2B X 20 mm	12.70		40	SEP
907205	937205	5/8	16	165	16	55	13	Pas de 8-36 UNF-2B X 20 mm	12.70		40	SEP
907306	937306	3/4		184	21	67	19	Pas de 8-36 UNF-2B X 32 mm	19.05	0.65	40	SEP
907307	937307	7/8	22	184	21	67	20	Pas de 8-36 UNF-2B X 32 mm	19.05	0.66	40	SEP
907409	937409	1 1/8		216	25.5	76	24	Pas de 10-32 UNF-2B X 40 mm	25.40	0.97	40	SEP
907511	937511	1 3/8		235	31	94	25	Pas de 10-32 UNF-2B X 48 mm	31.75	1.58	40	Cat I
907613	937613	1 5/8		254	39	109	28	Pas de 1/4"-28 UNF-2B X 60 mm	38.10	2.52	40	Cat I
907617	937617	2 1/8	54	290	47.5	133.5	35	Pas de 1/4"-28 UNF-2B X 75 mm	50.80	4.60	40	Cat I
907721	937721	2 5/8		327	47.5	133.5	38	Pas de 1/4"-28 UNF-2B X 75 mm	50.80	5.15	40	Cat I
907725	937725	3 1/8			60	154	43	Pas de 1/4"-28 UNF-2B X 75 mm	63.50	8.79		Cat I

^{*} Vanne Schrader sur le corps pour ces vannes.

CLAPETS ANTI-RETOUR

La fonction d'un clapet anti-retour est de permettre au fluide de ne circuler que dans un seul sens.

La gamme de Henry Technologies comprend des clapets à passage équerre et des clapets à passage droit. Les clapets à soupape correspondent aux séries 205, 116 et NRV. Les clapets à passage droit correspondent aux séries 119 et 120.

Utilisation

Les clapets anti-retour de Henry Technologies peuvent être utilisés avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

En général, les clapets anti-retour sont installés après un séparateur d'huile. Cela empêche le retour du liquide frigorigène condensé dans la conduite de refoulement et dans le séparateur.

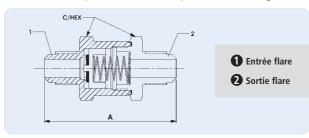
Les clapets anti-retour des séries 119 et 120 ne conviennent pas pour une utilisation sur les conduites de refoulement de compresseurs alternatifs.

Principales caractéristiques

- Conception solide
- Flèche indicatrice du sens de l'écoulement
- Opération silencieuse et efficace
- Pression d'ouverture minimale
- Modèles avec rallonges en cuivre séries 120 et NRV E

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 34,5 barg

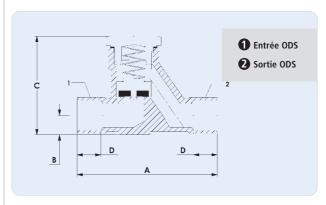

Températures de fonctionnement admissibles = -

Séries 116 et $205 = -40 \, ^{\circ}\text{C} \, \text{à} + 149 \, ^{\circ}\text{C}$

Série NRV = -40 °C à +120 °C

Séries 116 et 205 = -29 °C à 100 °C

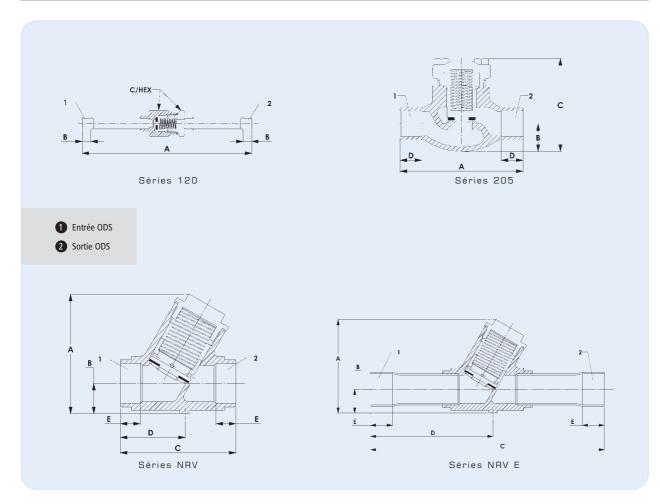
Généralement, les clapets anti-retour de Henry Technologies commencent à s'ouvrir à partir d'un différentiel de pression de 0,034 barg et sont totalement ouverts pour un différentiel de pression de 0,34 barg



Séries 119

Matériaux de construction

Pour la série 205, le corps de la vanne est en bronze coulé. Tous les autres corps sont en laiton. Tous les pistons sont en laiton. Les ressorts sont en acier inoxydable. Le matériau utilisé pour le siège du joint d'étanchéité est le PTFE pour les séries 116, 205 et NRV. Le matériel utilisé pour le siège du joint d'étanchéité est le néoprène pour les séries 119 et 120.



Séries 116

Numéro de référence	Dimension des raccords		Côtes	(mm)	Daida (ka)	Kv (m ³ /hr)	Cat. CE	
	(pouce)	Α	В	С	D	Poids (kg)	KV (M³/Nr)	Cat. CE
116003	3/8 ODS	75	10	52	8	0.24	1.38	SEP
116004	1/2 ODS	75	10	52	10	0.23	1.90	SEP
116005	5/8 ODS	75	10	52	13	0.22	2.25	SEP
116007	7/8 ODS	99	16	75	22	0.92	3.10	SEP

Numéro de référence	Dimension des raccords (pouce)		Côtes (mm)	Poids (kg)	Cat. CE	
Numero de reference	Dilliension des faccords (pouce)	Α	В	C/HEX	roius (kg)	Cat. CL
119-1/4	1/4 SAE Flare	57	-	21	0.09	SEP
119-3/8	3/8 SAE Flare	64	-	21	0.11	SEP
119-1/2	1/2 SAE Flare	76	-	32	0.24	SEP
120-3/8	3/8 ODS	153	8	21	0.16	SEP
120-1/2	1/2 ODS	158	10	32	0.25	SEP
120-5/8	5/8 ODS	163	13	32	0.28	SEP
120-7/8	7/8 ODS	189	19	38	0.53	SEP

Numéro de référence	Dimension des raccords		Côte (mm)	Poids (kg)	Kv (m³/hr)	Cat. CE		
Numero de reference	(pouce)	Α	В	С	D	rolus (kg)	KV (III-/III)	Cat. CL	
205-7/8	7/8 ODS	108	25	80	19	1.10	4.58	SEP	
205-1 1/8	1 1/8 ODS	124	29	98	24	2.02	6.40	SEP	
205-1 3/8-CE	1 3/8 ODS	137	32	108	25	2.64	8.90	Cat I	
205-1 5/8-CE	1 5/8 ODS	165	38	129	29	4.43	11.50	Cat I	
205-2 1/8-CE	2 1/8 ODS	216	51	157	38	7.75	19.03	Cat I	
205-2 5/8-CE	2 5/8 ODS	279	57	183	43	12.50	31.57	Cat I	

Numéro de référence	Dimension des raccords	ension des raccords Côte (mm)						V (3/l)	Cat. CE
Numero de reference	(pouce)	Α	В	С	D	E	Poids (kg)	Kv (m ³ /hr)	Cat. CE
NRV14	7/8 ODS	78	20	70	38	11	0.60	5	SEP
NRV18	1 1/8 ODS	78	20	70	38	11	0.53	8.5	SEP
NRV22-CE	1 3/8 ODS	106	27	102	57	17	1.30	13.5	Cat I
NRV26-CE	1 5/8 ODS	106	27	102	57	17	1.20	16	Cat I

Numéro de référence	Dimension des raccords			Côte (mm)			Deide (kg)	16 - (3 /l)	Cat. CE
Numero de reference	(pouce)	Α	В	С	D	E	Poids (kg)	Kv (m ³ /hr)	Cat. CE
NRV14E	7/8 ODS	78	20	191	98	19	0.77	5.0	SEP
NRV18E	1 1/8 ODS	78	20	225	116	23	0.79	8.5	SEP
NRV22E-CE	1 3/8 ODS	106	27	264	138	25	1.70	13.5	Cat I
NRV26E-CE	1 5/8 ODS	106	27	270	138	28	1.60	16.0	Cat I

Installation - Recommandations

- 1. Les vannes doivent être installées en respectant le sens d'écoulement indiqué par la flèche.
- Le corps et l'intérieur de la vanne doivent être protégés contre tout endommagement pendant le brasage. Des instructions complètes sont données dans le mode d'emploi fourni avec chaque vanne.
- 3. Les vannes de la série 116 peuvent être installées dans n'importe quelle position sauf bouchon en position basse. Il en va de même pour les modèles de la série 205 dont la dimension du raccord ne dépasse pas 1 3/8". Pour les modèles de dimensions supérieures, le bouchon doit être placé en position haute. Le bouchon de la série NRV doit être placé en position haute. Pour tous les modèles, il est recommandé de placer le bouchon en position haute.
- 4. Les clapets de refoulement anti-retour doivent être installés aussi loin que possible du compresseur.

VANNES À SOUPAPE

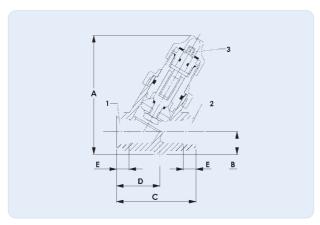
Les vannes à soupape sont utilisées à des fins d'isolement. La gamme de Henry Technologies comprend deux versions : avec ou sans rallonges en cuivre.

Utilisation

Les vannes $\,\grave{\mathrm{a}}$ soupape sont utilisables pour des applications $\grave{\mathrm{a}}$ basse et haute pression.

Les vannes à soupape de Henry Technologies peuvent être utilisées avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Principales caractéristiques

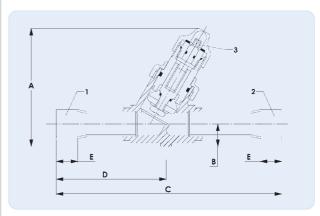

- Le corps incliné offre une conception compacte et permet une faible perte de pression
- Bouchon d'étanchéité mise a l'air libre
- Tige inamovible
- Flèche indicatrice du sens de l'écoulement
- Joints toriques en néoprène de première qualité

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 34,5 barg Températures de fonctionnement admissibles = -40 °C à + 120 °C

Matériaux de construction

Le corps de la vanne et le bouchon d'étanchéité sont en laiton. La tige est en acier plaqué. Le siège du joint d'étanchéité est en PTFE vierge. Les rallonges ODS pour les modèles "E" sont en cuivre.



Séries RLV

Installation - Recommandations

 Pendant le brasage, la vanne doit être protégée contre tout chauffage excessif pour ne pas endommager les alésages et les joints d'étanchéité. Des instructions complètes sont données dans le mode d'emploi fourni avec chaque vanne.

Séries RLV E

- 1 Entrée ODS
- 2 Sortie ODS
- 3 Prise carrée de 6.4 mm

Numéro de référence	Dimension des raccords			Côtes (mm)			Poids (kg)	Kv (m³/hr)	Cat. CE
Numero de reference	(pouce)	Α	В	С	D	E	roius (kg)	KV (III /III)	Cat. CL
RLV14	7/8 ODS	110	20	70	38	11	0.87	6.5	SEP
RLV18	1 1/8 ODS	110	20	70	38	11	0.80	11	SEP
RLV22-CE	1 3/8 ODS	134	27	102	58	17	1.75	18.1	Cat I
RLV26-CE	1 5/8 ODS	134	27	102	58	17	1.60	22	Cat I

	Dimension des raccords								
Numéro de référence				Côtes (mm)			Poids (kg)	Kv (m³/hr)	Cat. CE
Numero de reference	(pouce)	Α	В	С	D	E	roius (kg)	KV (III /III)	Cat. CE
RLV14E	7/8 ODS	110	20	188	97	19	1.06	6.5	SEP
RLV18E	1 1/8 ODS	110	20	225	116	23	1.08	11	SEP
RLV22E-CE	1 3/8 ODS	134	27	265	138	25	2.10	18.1	Cat I
RLV26E-CE	1 5/8 ODS	134	27	271	143	28	2.10	22	Cat I

VANNES A MENBRANES

Les robinets sans presse-étoupe sont appelés ainsi du fait de l'absence de presse-étoupe pour sceller la tige. A la place, des membranes métalliques sont utilisées pour isoler la tige du fluide.

La gamme de Henry Technologies comprend deux versions, "Golden Bantam" et "Standard".

Utilisation

Les robinets sans presse-étoupe de Henry Technologies sont utilisés dans une large variété d'applications pour la réfrigération et le conditionnement d'air à des fins d'isolement, de contrôle d'écoulement, de charge et de purge.

Les vannes peuvent être utilisées avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Caractéristiques principales

- Conception solide
- Compacte
- Anneau de siège en nylon stabilisé thermiquement pour une fermeture positive
- Rétro-fermeture positive lorsque la vanne est en position ouverte
- Sièges surélevés pour réduire les problèmes d'étanchéité dus à l'accumulation d'impuretés
- Membrane à large diamètre pour une meilleure portance, un meilleur écoulement et une durée de vie plus longue
- Joint hermétique entre le bouchon, les membranes et le corps
- Convient pour des applications sous vide

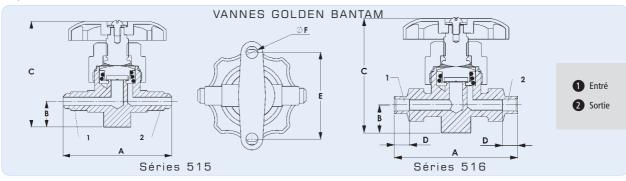
Caractéristiques supplémentaires pour les séries Standard

- Les membranes sont remplaçables à la pression de la conduite
- Ecoulement bidirectionnel (voir informations supplémentaires)

Caractéristiques techniques

Pressions de fonctionnement admissibles = d'un état de vide jusqu'à 34,5~barg

Températures de fonctionnement admissibles = - 29 °C à + 135 °C

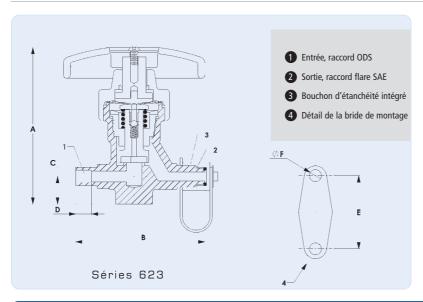

Matériaux de construction - Séries Golden Bantam

Le corps de la vanne, la partie supérieure de la tige et le bouchon sont en laiton. La partie inférieure de la tige avec l'anneau de siège sont en nylon et la membrane est composée de bronze phosphorique et d'acier inoxydable. Le ressort de la vanne est en acier inoxydable. Le volant est en plastique moulé.

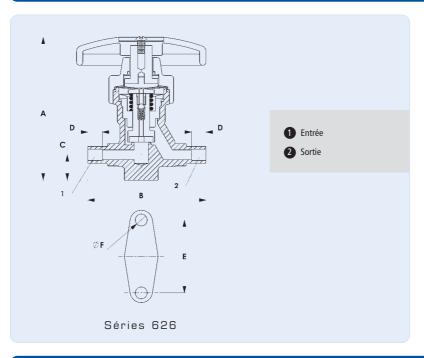
Matériaux de construction - Séries Standard

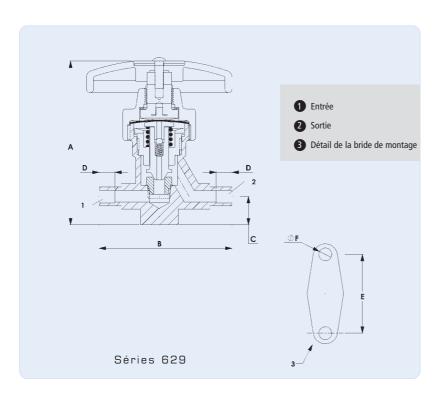
Le corps de la vanne et le bouchon sont en laiton. La partie inférieure de la tige est en laiton pour tous les modèles sauf pour la série 629 pour laquelle le matériel utilisé est le monel.

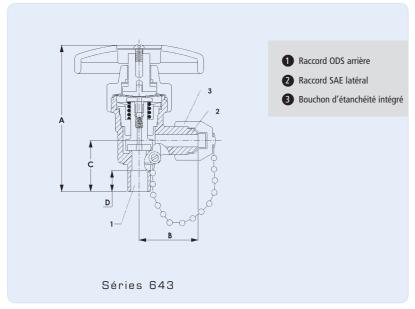
La partie supérieure de la tige, son bouchon et le ressort sont en acier inoxydable. L'anneau de siège est en nylon pour tous les modèles sauf pour la série 629. Ces modèles utilisent un anneau de siège en acier inoxydable. La membrane est composée de bronze phosphorique et d'acier inoxydable. Le volant est en métal blanc.



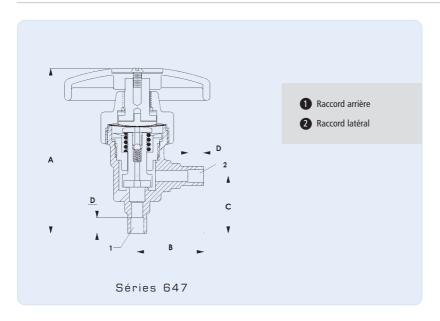
				Va	nnes Golden Ban	tam							
TVDE	Numéro de	Dimension des raccords			Côtes	(mm)			Dalda (laa)	W. (211)	C-1 CF		
TYPE	référence	(pouce)	Α	В	C (ouvert)	D	Е	Ø F	Poids (kg)	Kv (m ³ /hr)	Cat. CE		
515	5151	1/4 SAE Flare	64	14	65	N/A	51	7	0.28	0.85	SEP		
515	5153	3/8 SAE Flare	67	14 65 N/A 51 7 0.29 1.20									
515	5154	1/2 SAE Flare	99	16	75	N/A	51	7	0.48	2.14	SEP		
515	5155	5/8 SAE Flare	105	19	76	N/A	51	7	0.56	2.91	SEP		
516	5161	1/4 ODS	67	14	65	8	51	7	0.29	0.85	SEP		
516	5163	3/8 ODS	67	14	65	10	51	7	0.29	1.20	SEP		
516	5164	1/2 ODS	99	16	75	10	51	7	0.45	2.13	SEP		
516	5165	5/8 ODS	105	19	76	14	51	7	0.51	2.91	SEP		




SÉRIES STANDARD


				Câtos	(mm)				
Numéro de référence	Dimension des raccords (pouce)	Α	В	Cotes	D D	E	ØF	Poids (kg)	Cat. CE
6231N	1/4 ODS x 1/4 SAE Flare	86	67	14	8	41.4	6.9	0.47	SEP
6232N	3/8 ODS x 3/8 SAE Flare	86	67	14	11	41.4	6.9	0.55	SEP
6233N	1/2 ODS x 1/2 SAE Flare	90	83	16	14	44.5	7	0.62	SEP
6234N	5/8 ODS x 5/8 SAE Flare	95	94	19	18	50.8	7	0.65	SEP

Numéro de	Dimension des raccords (poce)			Côte	(mm)			Poids (kg)	6-1.65
référence	Dimension des raccoras (poce)	Α	В	С	D	E	ØF	i olas (lig)	Cat. CE
6261N	1/4 ODS	86	67	14	8	41.4	6.9	0.47	SEP
6263N	3/8 ODS	86	67	14	11	41.4	6.9	0.51	SEP
6264N	1/2 ODS	90	80	16	14	44.5	7	0.57	SEP
6265N	5/8 ODS	95	89	19	18	50.8	7	0.65	SEP
6266N	3/4 ODS	127	111	18	19	57.2	8.6	1.42	SEP
6267N	7/8 ODS	137	122	19	22	63.5	10.4	1.6	SEP
6268N	1 1/8 ODS	165	151	24	25	82.6	10.4	2.63	SEP



Numéro de	Dimension des raccords (pouce)			Côte	es (mm)			Poid (kg)	Cat. CE
référence	zimension des raccoras (pouce)	Α	В	С	D	E	ØF		Cat. CE
6291N	1/4 ODS	86	67	14	8	41.4	6.9	0.47	SEP
6293N	3/8 ODS	86	67	14	11	41.4	6.9	0.47	SEP
6294N	1/2 ODS	86	67	14	14	41.4	6.9	0.47	SEP
6295N	5/8 ODS	90	86	16	18	44.5	7	0.58	SEP
6297N	7/8 ODS	127	113	18	19	57.2	8.6	1.25	SEP
6298N	1 1/8 ODS	137	122	19	21	63.5	10.3	1.48	SEP

Numéro de	~		Côtes	(mm)		5.1.4.	
référence	Dimension des raccords (pouce)	Α	В	С	D	Poids (kg)	Cat. CE
6432N	3/8 ODS X 3/8 SAE Flare	86	33	29	11	0.44	SEP
6433N	1/2 ODS x 1/2 SAE Flare	89	41	30	14	0.6	SEP
6434N	5/8 ODS x 5/8 SAE Flare	97	44	35	18	0.8	SEP

Numéro de référence	Dimension des raccords (pouce)		Côtes	(mm)		Poids (kg)	Cat. CE
Numero de reference	Dimension des raccords (pouce)	Α	В	С	D	i olas (lig)	Cat. CE
6471N	1/4 ODS	87	33	29	8	0.39	SEP
6473N	3/8 ODS	87	33	29	11	0.4	SEP
6474N	1/2 ODS	90	38	30	14	0.5	SEP
6475N	5/8 ODS	97	38	35	18	0.6	SEP
6476N	3/4 ODS	124	48	36	19	1.19	SEP
6477N	7/8 ODS	137	53	45	22	1.34	SEP
6478N	1 1/8 ODS	165	64	57	25	2.01	SEP

Informations supplémentaires

- 1. Pour les séries 623*, 626*, 643* et 647* : les vannes sont bidirectionnelles jusqu'à 24,1 barg. Au delà, l'écoulement doit venir de sous le siège de la vanne.
- Pour les séries 629*: Dans le cas de détentes manuelles ou de contrôle d'arrivée du fluide, le sens de l'écoulement doit correspondre à avoir l'entrée sous le siège de la vanne.

Installation – Recommandations

 Les vannes doivent être protégées contre tout chauffage excessif lors de l'installation pour ne pas endommager les joints d'étanchéité. Des instructions complètes sont données dans le mode d'emploi fourni avec chaque vanne

VANNES D'ARRÊTS À PRESSE-ÉTOUPE

Les vannes à presse-étoupe sont appelées ainsi car la tige est scellée via un presse-étoupe. La gamme de Henry Technologies est composée des séries 7, 926, 927 et 203.

Utilisation

Les vannes à presse-étoupe de Henry Technologies sont utilisées dans une large variété d'applications pour la réfrigération et le conditionnement d'air à des fins d'isolement, de contrôle d'écoulement, de charge et de purge.

Les vannes peuvent être utilisées avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Les modèles 7761 et 7775 peuvent aussi être utilisés avec l'ammoniac.

Caractéristiques principales

- Large choix de dimensions de raccord d'entrée et de sortie
- Compacte
- Rétro-fermeture en option permettant le retour in situ du presse-étoupe

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 34,5 barg (séries en laiton 77-B, 78 et 92)

Pressions de fonctionnement admissibles = 0 à 31,0 barg (série 203)

Pressions de fonctionnement admissibles = 0 à 69,0 barg (série en acier 77)

Températures de fonctionnement admissibles = -29 °C à + 149 °C (Toutes vannes confondues sauf la série 203)

Températures de fonctionnement admissibles = -40 $^{\circ}$ C à + 163 $^{\circ}$ C (Série 203 uniquement)

Matériaux de construction

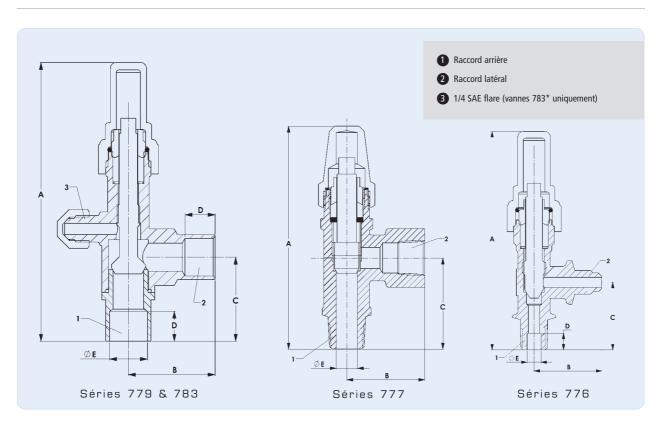
Séries en laiton 77-B, 78 et 92:-

Le corps de la vanne est en laiton. La tige est en acier plaqué. Un joint d'étanchéité métal à métal est utilisé. Un composé graphite est utilisé pour le presse-étoupe. Le bouchon d'étanchéité est en plastique moulé

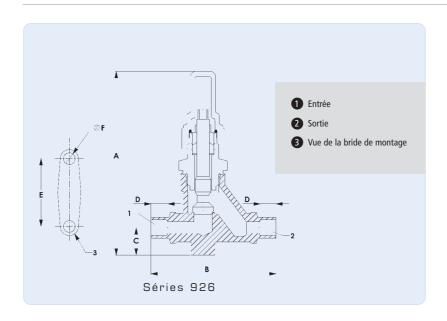
Séries en laiton 203:-

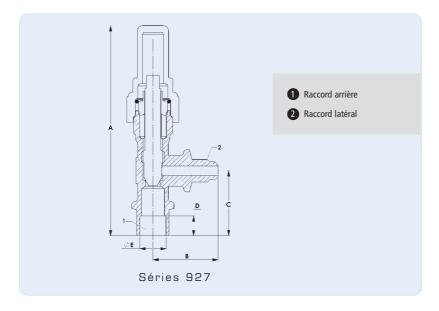
Le corps de la vanne et le bouchon sont respectivement en bronze et en laiton. La tige est en acier inoxydable. Le joint est en PTFE. Un composé graphite est utilisé pour le presse-étoupe. Le bouchon d'étanchéité est en plastique moulé.

Séries en acier 77:-

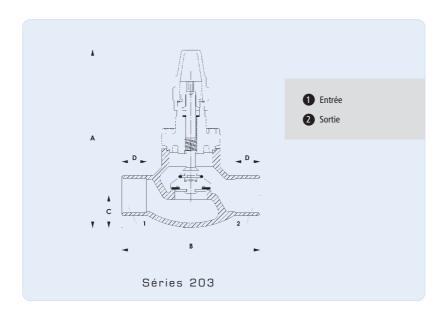

Le corps de la vanne est en acier. La tige est en acier plaqué. Un joint d'étanchéité métal à métal est utilisé. Un composé graphite est utilisé pour le presse-étoupe. Le bouchon d'étanchéité est en plastique moulé ou en acier.

'HIGH PRESSURE PACKED SHUT-OFF VALVE NOW AVAILABLE. PLEASE REFER TO THE 'VALVES' SECTION OF THE WEBSITE FOR THE LATEST ENGLISH INFORMATION.'




	Numéro de référence	Dimension des	raccords (pouce)		Côtes	(mm)		Ø E (pouce)	Poids (kg)	MWP (barg)	Cat. CE
	Numero de reference	Arrière	Latéral	Α	В	С	D	Ø E (pouce)	Polus (kg)	WWF (barg)	Cat. CE
	7761-B	1/4 MPT	1/4 SAE Flare	98	32	32	8	1/4 ODS	0.15	34.5	SEP
ture	7771-B	1/4 MPT	1/4 FPT	98	32	32	8	5/16 ODS	0.15	34.5	SEP
erme	7763-B	1/4 MPT	3/8 SAE Flare	98	32	32	8	5/16 ODS	0.14	34.5	SEP
tro-f	7764-B	3/8 MPT	1/4 SAE Flare	98	32	32	8	3/8 ODS	0.15	34.5	SEP
de rétro-fermeture	7766-B	3/8 MPT	3/8 SAE Flare	98	32	32	8	3/8 ODS	0.14	34.5	SEP
Absence	7767-B	3/8 MPT	1/2 SAE Flare	98	32	32	8	3/8 ODS	0.15	34.5	SEP
Abs	7768-AB	1/2 MPT	3/8 SAE Flare	99	33	35	10	1/2 ODS	0.32	34.5	SEP
	7768-B	1/2 MPT	5/8 SAE Flare	99	41	35	10	1/2 ODS	0.34	34.5	SEP
	7792-B	1/2 MPT	1/2 SAE Flare	122	37	40	N/A	1/2 ODS	0.31	34.5	SEP
	7793-B	1/2 MPT	5/8 SAE Flare	125	39	43	N/A	1/2 ODS	0.34	34.5	SEP
	7830*	3/8 ODS	3/8 ODS	110	33	29	8	3/8 ODS	0.24	34.5	SEP
eture	7831*	1/2 ODS	1/2 ODS	114	33	33	10	1/2 ODS	0.25	34.5	SEP
ferm	7832*	5/8 ODS	5/8 ODS	117	32	36	13	5/8 ODS	0.26	34.5	SEP
Rétro-fermeture	7833*	7/8 ODS	7/8 ODS	138	45	43	19	7/8 ODS	0.47	34.5	SEP
Œ	7834*	1 1/8 ODS	1 1/8 ODS	180	45	51	24	1 1/8 ODS	0.79	34.5	SEP
	7835-CE*	1 3/8 ODS	1 3/8 ODS	188	51	57	25	1 3/8 ODS	1.10	34.5	Cat I
	7836-CE*	1 5/8 ODS	1 5/8 ODS	232	54	62	28	1 5/8 ODS	1.60	34.5	Cat I

	Numéro de référence	Dimension des	raccords (pouce)			Côtes (n	nm)		D. I.I. (kg)	MANA/D (hawa)	C-4 CF
ane	Numero de reterence	Arrière	Latéral	Α	В	С	D	ØE	Poids (kg)	MWP (barg)	Cat. CE
fermeture	7761	1/4 MPT	1/4 SAE Flare	98	32	32	N/A	8	0.14	69	SEP
rétro-fo	7771	1/4 MPT	1/4 FPT	98	32	32	N/A	8	0.15	69	SEP
용	7772	1/4 FPT	1/4 FPT	98	32	32	N/A	8	0.15	69	SEP
Absence	7773	3/8 MPT	3/8 FPT	109	38	44	N/A	10	0.38	69	SEP
Abs	7774	3/8 FPT	3/8 FPT	109	38	44	N/A	10	0.38	69	SEP
	7775	1/2 MPT	1/2 FPT	109	38	44	N/A	12	0.39	69	SEP



	Numéro de	Dimension des raccords			Côtes	(mm)			Delide (lee)	AMAID (barra)	C-1 CF
an	référence	(pouce)	Α	В	С	D	E	ØF	Poids (kg)	MWP (barg)	Cat. CE
fermeture	9261	1/4 ODS	112	70	17	8	41.4	7.1	0.36	34.5	SEP
	9263	3/8 ODS	112	76	17	10	41.4	7.1	0.36	34.5	SEP
Rétro-	9264	1/2 ODS	112	81	17	11	41.4	7.1	0.36	34.5	SEP
	9265	5/8 ODS	114	86	18	18	41.4	7.1	0.36	34.5	SEP

e	Numéro de	Dimension	des raccords (pouce)		Côte	s (mm)		F (manus)	Poids (kg)		6-4-65
-fermeture	référence	Afficie	Latéral	Α	В	С	D	E (pouce)	Polas (kg)	MWP (barg)	Cat. CE
-ferr	9270	1/4 ODS	1/4 SAE Flare	98	32	32	8	1/4 ODS	0.15	34.5	SEP
rétro	9271	3/8 ODS	1/4 SAE Flare	98	32	32	8	3/8 ODS	0.15	34.5	SEP
e de	9272	3/8 ODS	3/8 SAE Flare	98	32	32	8	3/8 ODS	0.21	34.5	SEP
Absence	9273	1/2 ODS	1/4 SAE Flare	98	32	32	10	1/2 ODS	0.15	34.5	SEP
¥	9274	1/2 ODS	3/8 SAE Flare	98	32	32	10	1/2 ODS	0.21	34.5	SEP

	Numéro de référence	de Dimension des raccords		Côtes (mm)						a
		(pouce)	Α	В	С	D	Poids (kg)	Kv (m³/hr)	MWP (barg)	Cat. CE
a	2030-AA	7/8 ODS	143	108	25	19	1.36	4.58	34.5	SEP
netur	2030-BA	1 1/8 ODS	149	124	29	24	2.13	6.40	34.5	SEP
Rétro-fermeture	2031-CE	1 3/8 ODS	222	137	32	25	3.34	9.34	34.5	Cat I
létro	2032-CE	1 5/8 ODS	252	165	38	29	4.73	11.50	34.5	Cat I
<u>~</u>	2033-CE	2 1/8 ODS	270	216	51	38	7.59	19.03	34.5	Cat I
	2034-CE	2 5/8 ODS	303	279	58	43	12.78	31.40	34.5	Cat I
	2035-CE	3 1/8 ODS	337	305	67	44	20	44.98	34.5	Cat I

Installation - Recommandations

1.Les vannes doivent être protégées contre tout endommagement du à la chaleur pendant l'installation. Des instructions complètes sont données dans le mode d'emploi fourni avec chaque vanne.

VANNES DE CHANGEMENT D'HUILE

La vanne de changement d'huile est un outil efficace qui permet de gagner du temps lors de la vidange et du remplacement de l'huile du carter du compresseur.

Utilisation

Les vannes de changement d'huile sont principalement conçues pour les compresseurs de type semi hermétique.

Les vannes peuvent être utilisées avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

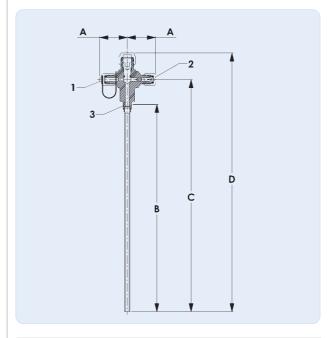
Caractéristiques principales

- Facile à installer
- Réduit le temps et le coût de maintenance
- Conçue pour la charge et la vidange de l'huile
- Raccord pour manomètre avec vanne Schrader
- Vanne dont le système d'orifice permet une charge et une vidange rapide
- Conçue pour être montée en permanence sur le compresseur en prévision de futures usages.

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 34,5 barg

Températures de fonctionnement admissibles = -29 °C à + 120 °C


Matériaux de construction

Le corps de la vanne est en laiton et la tige est en acier plaqué. Le bouchon d'étanchéité de la tige est en laiton ou en nylon. Le raccord flare SAE et les bouchons d'étanchéité de l'orifice pour la vanne Schrader sont en nylon. Le tuyau d'aspiration est en téflon

Installation - Recommandations

- 1 Pour des raisons de sécurité, le bouchon d'étanchéité du raccord flare SAE, complété par une sangle, ne doit pas être mis sous pression
- 2. Des instructions complètes sont données dans le mode d'emploi fourni avec chaque vanne

- Raccord latéral Sortie d'huile
- 2 Raccord latéral Orifice Schrader
- 3 Raccord au compresseur

Remarque : vanne 9297 illustrée ci-dessus. La vanne 9298 a un bouchon plus long que celui sur la photographie

Numéro de référence	Dimension des r	accords (pouce)		Côtes	(mm)		Poids (kg)	Cat. CE
Numero de reference	Latéral	Arrière	Α	В	с	D	r olds (kg)	cut. CL
9297	1/4 SAE Flare	1/8 MPT	34	254	285	317	1.93	SEP
9298	1/4 SAE Flare	1/4 MPT	34	257	284	350	2.20	SEP

SOUPAPES DE SÉCURITÉ

'NEW RANGE OF HIGH PRESSURE PRV'S AVAILABLE. PLEASE REFER TO THE 'VALVES' SECTION OF THE WEBSITE FOR LATEST ENGLISH INFORMATION.'

La fonction d'une soupape de sécurité est de protéger contre toute surpression. Pour des raisons de sécurité, une surpression excessive dans un quelconque composant d'un système de réfrigération doit être évitée.

Utilisation

Les soupapes de sécurité de Henry Technologies sont généralement utilisées pour protéger un récipient de liquide contre toute surpression. En cas d'incendie, quelque soit le liquide frigorigène présent à l'intérieur d'un récipient, il s'évapore et de ce fait la pression augmente. La soupape de sécurité contrôle cet accroissement en évacuant la vapeur contenu dans le récipient. Une autre application consiste à protéger les équipements contre une surpression venant du compresseur.

Les soupapes de sécurité de Henry Technologies sont conçues pour évacuer la vapeur et ne doivent pas être utilisées pour évacuer le liquide frigorigène. La performance des soupapes dépend de la contre-pression et, de ce fait, l'évacuation doit se faire dans l'atmosphère.

Les soupapes des séries en laiton et en acier inoxydable peuvent être utilisées avec les fluides frigorigènes HFC et HCFC associés à leurs huiles. Les séries des soupapes en acier inoxydables peuvent aussi être utilisées avec l'ammoniac

Une fois qu'une soupape de sécurité a évacué le gaz, il est recommandé de la remplacer car le tarage n'est alors plus assuré. Voir la section sur l'installation du matériel pour plus de détails.

Conformément aux "Institute of Refrigeration Guidelines" (RU), Henry Technologies recommande de remplacer une soupape de sécurité au minimum tous les 5 ans. Cette période de temps peut être réduite si d'autres régulations entrent en vigueur.

Il est recommandé d'avoir une soupape de sécurité tarée à une pression 25% supérieure à la pression maximale de fonctionnement du système. Le tarage de la soupape de sécurité ne doit pas être supérieur au MWP du récipient.

Fonctionnement

Une soupape de sécurité traditionnelle est conçue pour s'ouvrir à une pression prédéterminée – la pression de tarage. Un ressort exerce une force sur le siège de la soupape via un piston ce qui permet de sceller le système. A une pression égale à la pression de tarage, le piston s'élève laissant s'échapper une petite quantité de gaz à travers la soupape. La force de pression agissant sur le piston augmente alors de manière significative et surpasse la force du ressort. Le déséquilibre des forces provoque l'ouverture complète de la soupape de sécurité de façon instantanée. Par définition, la différence entre la pression de tarage et la pression lors de l'ouverture complète de la soupape ne dépasse pas les 10%. La pression du système est contrôlée/réduite en évacuant le fluide frigorigène sous forme vapeur à travers la soupape. La soupape se referme ensuite à la pression à laquelle la force du ressort surpasse de nouveau la force du piston. Pour des conditions normales de fonctionnement, la pression à l'entrée de la soupape est inférieure à la pression de tarage. La soupape ne doit s'ouvrir uniquement qu'en cas de conditions de fonctionnement anormales.

Caractéristiques principales

- Conception sûre éprouvée
- · Conforme à la Cat. IV de la directive PED
- Usinée avec outils de précision pour assurer une bonne fiabilité
- Capacité de débit élevée
- Compacte
- · Joint de la soupape en téflon antiadhésif

- Joint à l'épreuve de l'éclatement
- · Matériau d'étanchéité à résistance chimique élevée
- Inviolable
- Certificats de test disponibles à la demande
- Pressions de tarage non standards disponibles à la demande

Caractéristiques techniques

Toutes les soupapes de sécurité de Henry Technologies sont conçues et fabriquées conformément à la section VII, division 1 du code ASME

Pour les modèles des séries 526, 5230 et 5231:-

Plage de tarage = 14 à 31 barg

Températures de fonctionnement admissibles = - 40 °C à + 107 °C

Pour les modèles des séries 5232 et 524:-

Plage de tarage = 10,3 à 31 barg Températures de fonctionnement admissibles = - 40 °C à + 107 °C

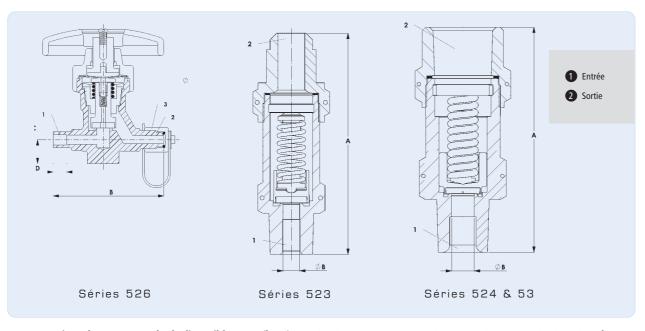
Pour les modèles de la série 53:-

Plage de tarage = 10,3 à 31 barg Températures de fonctionnement admissibles = - 29 °C à + 135 °C

Matériaux de construction

Pour toutes les soupapes de la série 52, le corps et le raccord de sortie sont en laiton. Les pièces internes comme le piston et la glande d'ajustement sont soit en laiton soit en acier inoxydable.

Pour les vannes de la série 53, le corps est en acier inoxydable. Le raccord de sortie et les pièces internes de la soupape sont soit en acier plaqué soit en acier inoxydable.


Pour toutes les soupapes, le joint est en téflon de première qualité (PTFE). Tous les ressorts sont en acier allié plaqué de haute résistance.

Soupape de sécurité, montage en équerre - Laiton								
	Dimension de	es raccords (pouce)	Côtes	(mm)				
Numéro de référence	Entrée	Sortie	Α	ØB	Section d'écoulement K _{dr}	Poids (kg)	Cat. CE	
526E-xx.x BAR-CE	3/8 MPT	3/8 SAE Flare	78	6.35	31.67	0.41	0.26	Cat IV

Soupape de sécurité, montage droit - Laiton								
Noména da néféranca	Dimension de	es raccords (pouce)	Côte (mm)		Section d'écoulement	Kdr	Daid (lon)	C-4 C
Numéro de référence	Entrée	Sortie	А	ØB	Section a econtenient	K dr	Poid (kg)	Cat. CE
5230A-xx.x BAR-CE	1/4 MPT	1/2 SAE Flare	85	6.35	31.67	0.68	0.18	Cat IV
5231A-xx.x BAR-CE	3/8 MPT	1/2 SAE Flare	85	6.35	31.67	0.68	0.19	Cat I\
5231B-xx.x BAR-CE	1/2 MPT	5/8 SAE Flare	91	6.35	31.67	0.68	0.22	Cat IV
5232A-xx.x BAR-CE	1/2 MPT	3/4 SAE Flare	109	9.5	71.26	0.67	0.44	Cat IV
5240-xx.x BAR-CE	1/2 MPT	3/4 FPT	95	9.5	71.26	0.67	0.41	Cat I\
5242-xx.x BAR-CE	3/4 MPT	3/4 FPT	95	9.5	71.26	0.67	0.45	Cat I\
5244-xx.x BAR-CE	1 MPT	1 FPT	106	12.7	126.68	0.68	0.66	Cat I
5246-xx.x BAR-CE	1 1/4 MPT	1 1/4 FPT	145	17.9	250.41	0.60	1.48	Cat I

	Soupape de sécurité, montage droit – Acier inoxydable								
	Dimension de	es raccords (pouce)	(pouce) Côtes (mm)					_	
Numéro de référence	Entrée	Sortie	Α	ØB	Section d'écoulement K _{dr}		Poids (kg)	Cat. CE	
5340-xx.x BAR-CE	1/2 MPT	3/4 FPT	94	9.5	71.26	0.67	0.39	Cat IV	
5342-xx.x BAR-CE	3/4 MPT	3/4 FPT	94	9.5	71.26	0.67	0.43	Cat IV	
5344A-xx.x BAR-CE	3/4 MPT	1 FPT	106	12.7	126.68	0.68	0.56	Cat IV	
5344-xx.x BAR-CE	1 MPT	1 FPT	106	12.7	126.68	0.68	0.62	Cat IV	
5345-xx.x BAR-CE	1 MPT	1 1/4 FPT	149	17.9	250.41	0.6	1.25	Cat IV	
5346-xx.x BAR-CE	1 1/4 MPT	1 1/4 FPT	145	17.9	250.41	0.6	1.37	Cat IV	

Les pressions de tarage standards disponibles sont (barg): 10.3, 13.8, 14.0, 16.2, 17.2, 20.7, 24.1, 24.8, 25.9, 27.6, 29.3 and 31.0

		Capacité de débit	massique des soupa	apes (kg d'air/min) à	20 °C Part No : Nu	méro de référence			
	Pression de tarage standard								
Numéro de référence	10.3	14	16.2	20.7	24.1	24.8	27.6	31	
*526E-CE	N/A	3	3.4	4.4	5	5.1	5.8	6.5	
*5230A-CE									
*5231A-CE	N/A	4.9	5.8	7.3	8.4	8.6	9.6	10.8	
*5231B-CE									
5232A-CE									
5240-CE	8.4								
5242-CE		11.5	12.7	16	18.6	19.1	21.2	23.9	
5340-CE									
5342-CE									
5244-CE									
5344-CE	15.1	20.7	23	29	33.6	34.5	38.2	42.8	
5344A-CE									
5246-CE									
5345-CE	26.5	34.5	40.2	50.7	58.8	60.5	66.9	75.0	
5346-CE									

Table de performance

Les capacités de débit de refoulement des soupapes sont indiquées dans la table pour les pressions de tarage standard.

Pour d'autres tarages, la capacité de débit peut être déterminée en utilisant un réglage de pression de tarage standard comme point de départ

Exemple:

La capacité de débit de la soupape 526E est nécessaire pour une pression de tarage de 15 barg.

Capacité de débit (nouveau tarage) =
$$\left(\frac{P(\text{nouveau tarage} + 1.013}{P(\text{tarage standard}) + 1.013}\right) \times \text{Capacité de débit}$$

Dans le cas présent, la pression de tarage standard qui convient le mieux est 14 barq

Capacité de débit
$$\left(\frac{15 + 1.013}{14 + 1.013}\right) \times 3.0 = \left(\frac{16.013}{15.013}\right) \times 3.0 = 3.2$$
kg/min d'air

Toutes les capacités de débit sont données en kg/min d'air à 20 °C. L'air est utilisé en tant que fluide de référence.

Pour convertir la capacité de débit d'air en une capacité de débit d'un fluide frigorigène, l'expression suivante peut être utilisée :-

$$W_r = \frac{W_{air}}{r_w}$$

0ù:-

 $W_r = D\acute{e}bit$ massique du fluide frigorigène, kg/min $W_{air} = D\acute{e}bit$ massique de l'air, kg/min

rw = coefficient de conversion

Par souci de simplification, les coefficients rw sont donnés pour quelques fluides frigorigènes traditionnels. L'utilisation de ces coefficients donne une solution approximative. Si un degré de précision supérieur est nécessaire, l'utilisateur doit consulter la référence (1). Cette référence donne une formule détaillée pour le coefficient rw:

Coefficient de conversion rw
0.61
0.57
0.59
0.62
0.67
1.33

Les Normes de Réfrigération Européennes actuelles n'utilisent pas la capacité de débit d'air dans le choix de la soupape. A la demande de certains clients Henry Technologies a toutefois inclus cette méthode.

Conformément aux Normes de Réfrigération Européennes actuelles, une autre approche est recommandée par Henry Technologies. La capacité de débit est calculée à partir de l'aire de la section de l'écoulement de la soupape, A, et le coefficient d'écoulement réduit, Kdr. Ces paramètres sont indiqués dans les tables de dimensions.

Guide de sélection

Pour des raisons de sécurité, le choix de la soupape de sécurité doit être effectuée uniquement par des ingénieurs qualifiés.

Il est important de choisir/dimensionner une soupape de sécurité en tenant compte de tous les facteurs possibles de surpression comme les sources de chaleur externes et internes, le fonctionnement du compresseur et la détente du liquide. La méthodologie du système de contrôle, le type d'équipement utilisé, etc. influent sur le nombre de coefficients qui doivent être pris en considération dans le choix de la soupape de sécurité.

Les soupapes de sécurité de Henry Technologies sont conçues pour refouler le fluide frigorigène sous forme vapeur et donc elles ne sont pas recommandées en tant que protection contre des surpressions dues à un liquide.

Comme une soupape de sécurité est un dispositif de sécurité, il est essentiel d'effectuer un choix correct. Il est conseillé de choisir de telle façon à satisfaire les normes européennes EN378 (référence 2) et EN13136 (référence 3). Dans certains cas, les Normes Nationales en viqueur doivent être consultées.

Un exemple de sélection est inclus utilisant l'approche recommandée par les références mentionnées ci-dessus. Cet exemple montre les calculs dans le cas d'un feu externe seulement. D'autres formules sont nécessaires pour d'autres sources de surpression.

Exemple

Un récipient de liquide doit être protégé contre toute surpression due à un feu.

Dimensions du récipient = Longueur 2,2m (L) * Diamètre extérieur 0,254m

Fluide frigorigène = R404A

Pression de tarage = 20.7 barg

$$Q_{md} = \frac{3600 \times \phi \times A_{surf}}{h_{vap}}$$

 $Q_{md}=$ Capacité de débit minimale requise de la soupape de sécurité pour le fluide frigorigène en question ; kg/h

φ = Densité de flux de chaleur, kW/m³. Les normes assument une valeur égale à 10 kW/m³ mais il est ajouté qu'une plus grande valeur peut être utilisée si nécessaire. Ce nombre se rapporte au cas d'un récipient non calorifugé.

Asurf = Aire externe du récipient, m²

h_{vap} = chaleur latente de vaporisation calculée pour une pression 1,1 fois supérieure à la pression de tarage, en bar a, de la soupape de sécurité, kJ/kg

Remarques

Lorsque que la pression de tarage est proche de la pression critique du fluide frigorigène, cette méthode peut ne pas s'appliquer

Asurf=
$$(\pi \times D \times L) + 2 \left(D^2 \times \frac{\pi}{4}\right)$$

Ainsi

Asurf =
$$(\pi \times 0.254 \times 2.2) + 2 \left(0.254^2 \times \frac{\pi}{4}\right) = 1.86m^2$$

Calculer la chaleur latente de vaporisation, hvap, pour une pression 1,1 fois supérieure à la pression de tarage:-

$$(20.7 \times 1.1) + 1.013 = 23.78$$
 bar a

A partir des tables des propriétés du fluide frigorigène, utiliser les enthalpies de vapeur saturée et de liquide saturé à la pression ci-dessus

$$h_{vap} = (285.8-181.2) = 104.6 \text{ kJ/kg}$$

$$Q_{md} = \frac{3600 \times 10 \times 1.86}{104.6} = \frac{640 \text{ kg/hr}}{104.6} \text{ R404A}$$

Afin de calculer le débit massique à travers la soupape de sécurité, on utilise l'équation suivante :-

$$Q_m = 0.2883 \times C \times A \times Kdr \times \sqrt{\frac{P_0}{V_0}}$$

Cette équation assume un écoulement critique.

C = fonction de l'exposant isentropique

A = Aire de la section de l'écoulement de la soupape de sécurité, mm²

Kdr = coefficient d'écoulement réduit de la soupape de sécurité

 P_0 = pression en amont, P_0 = 1.1 P_{set} + P_{atm} , bar a

Vo = Volume spécifique de vapeur saturée à Po, m³/kg

Les informations sur le fluide frigorigène donnent les valeurs de C et Vo.

L'objectif est de choisir une soupape de sécurité avec $Q_m > Q_{md}$. De cette façon, la capacité de débit de la soupape de sécurité est supérieure à la valeur requise ce qui évite d'obtenir une pression excessive dans le récipient. L'utilisateur doit choisir un modèle de soupape avec un coefficient ($A \times K_{dr}$) adéquate.

C'est pourquoi, dans cet exemple, un modèle de la série 523 a été choisi avec un orifice de $6.35\,$ mm. A partir de la table de dimensions table de dimensions, $A=31.67\,$ mm², $K_{dr}=0.68\,$

$$Q_m = 0.2883 \times 2.49 \times 31.67 \times 0.68 \times \sqrt{\frac{23.78}{0.0074}} = \frac{876.4 \text{ kg/hr}}{1.0074}$$
 R404A

Ainsi, pour cet exemple, les modèles qui conviennent sont les suivants : 5230A, 5231A ou 5231B. Le choix final dépend des dimensions voulues pour les raccords d'entrée et de sortie

Remarques additionnelles:-

- Si un disque de rupture de Henry technologies est utilisé avec une soupape de sécurité de Henry Technologies, la capacité de débit de la soupape de sécurité doit être réduite de 10%. Dans l'exemple ci-dessus, la capacité de débit de la soupape de sécurité doit être réduite à 788,8 kg/h (876.4 x 0.9).
- Il est important de ne pas trop surdimensionner une soupape de sécurité car ses performances peuvent en être altérées. Contacter Henry Technologies pour plus d'informations.
- La tuyauterie à l'entrée et à la sortie doit être correctement dimensionnée afin d'éviter les pertes de pression. Des pertes de pression excessives affectent les performances de la soupape. Consulter référence 3.

Références :-

(1) ANSI/ASHRAE 15-2004 (2) EN 378-2:2000* (3) EN 13136:2001*

*Dernières révisions au moment de la publication. Au moment de la publication, ces normes étaient en révision. L'utilisateur doit s'assurer que les dernières révisions sont référencées

Installation - Recommandations

- Raccorder la soupape de sécurité sur un emplacement situé audessus du niveau du liquide frigorigène, dans l'espace occupé par la vapeur. Les vannes d'arrêt ne doivent pas être situées entre le récipient et la soupape de sécurité sauf celles à 3 voies.
- Ne pas faire refouler la soupape de sécurité avant l'installation ou lors de tests de pression sur le système.
- 3. Les soupapes de sécurité doivent être montées verticalement.
- 4. Les soupapes de sécurité doivent être remplacées après une évacuation de gaz. La plupart des systèmes sont sujets à l'accumulation d'impuretés. Les particules de métal et l'encrassement sont en général rejetés sur le siège de la soupape de sécurité. Ceci entrave la fermeture de la soupape à la pression de tarage initiale. Une soupape peut aussi évacuer un gaz à une pression inférieure à la pression de tarage voulue à cause de la force de l'action de formature.
- La tuyauterie ne doit pas imposer de charge à la soupape de sécurité.
 Des charges peuvent survenir à cause de mauvais alignements, de détente thermique, de la poussée du gaz refoulé, etc.

DISQUES DE RUPTURE

La fonction d'un disque de rupture est de protéger contre toute surpression. Pour des raisons de sécurité, une surpression excessive dans un quelconque composant d'un système de réfrigération doit être évitée. Un disque de rupture est généralement utilisé avec une soupape de sécurité de Henry Technologies.

Utilisation

Un disque de rupture protège contre toute fuite ou perte de fluide frigorigène à travers une soupape de sécurité. Un disque de rupture peut aussi être utilisé avec un manomètre et/ou un contacteur de pression pour détecter si la soupape de sécurité a évacué un qaz.

Les disques de rupture de Henry Technologies sont conçus pour fonctionner avec des gaz et ne doivent pas être utilisés pour éviter la surpression de liquides.

Les modèles en laiton de la série 55 peuvent être utilisées avec les fluides frigorigènes HFC et HCFC sous forme gazeuse. Les modèles en acier inoxydable de la série 56 peuvent aussi être utilisées avec l'ammoniac.

Conformément aux "Institute of Refrigeration Guidelines" (RU), il est recommandé de remplacer la partie supérieure des disques de rupture au moins tous les 2 ans. La partie inférieure des disques de rupture doit être remplacée au moins tous les 5 ans. Ces périodes de temps peuvent être réduites si d'autres régulations entrent en vigueur.

Fonctionnement

Un disque est fixé dans un réceptacle. Le disque est conçu pour éclater à une pression prédéterminée — la pression de tarage. Un disque à flambage inverse est utilisé. Cela signifie que le disque possède un côté convexe qui s'oppose au sens de la pression du fluide et est conçu pour flamber à cause des forces de compression, avant d'éclater. Un disque de rupture à flambage inverse a l'avantage d'être moins sensible à la température, de pouvoir fonctionner avec des pressions élevées et de résister plus longtemps à la fatigue. Chaque disque est fabriqué avec une ligne de prédécoupe. Cette ligne de prédécoupe combinée avec le flambage permet au disque d'éclater. Lors de l'éclatement, le disque est conçu pour se déchirer sur une grande surface pour permettre un écoulement rapide. Le disque est conçu pour ne pas se fragmenter après sa rupture.

Caractéristiques principales

- Conception sûre éprouvée
- Double conformité ASME & CE
- Capacité de débit élevée
- Compact
- Disque à flambage inverse qui ne se fragmente pas
- 2 orifices de 1/8 NPT
- Etanchéité testée avec l'hélium
- Pressions de tarage non standard disponibles à la demande

Caractéristiques techniques

Champ de tarage = 10,3 à 31 barg

Températures de fonctionnement admissibles = - 40 °C à + 107 °C

Matériaux de construction

Pour les séries 55 et 56, le corps est respectivement en laiton et en acier inoxydable.

Le matériau du disque est un alliage de nickel

Gamme de fabrication des disques de rupture à 22 °C					
Pression de tarage (barg)	Plage de pressions (barg)				
10.3	9.8 - 10.8				
14	13.3 - 14.7				
16.2	15.4 - 17.0				
17.2	16.3 - 18.0				
20.7	19.7 - 21.7				
24.1	22.9 - 25.3				
24.8	23.6 - 26.0				
27.6	26.2 - 29.0				
31	29.5 - 32.6				

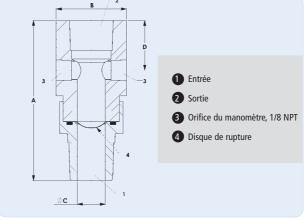
Numéro de référence	Dimension (por	des raccords uce)			Côt	es (mm)		Pression de tarage des disques de rupture à	Poids (kg)	Cat. C
	Entrée	Sortie	Α	В	øc	D	AMNS, mm ² (Remarque 1)	22 °C (barg)	(
5525-16.2 Bar-CE								16.2		
5525-20.7 Bar-CE								20.7		
5525-24.1 Bar-CE	3/8 MPT	3/8 FPT	65	31.8 A/F	9.7	20	64.5	24.1	0.28	Cat IV
5525-27.6 Bar-CE								27.6		
5525-31.0 Bar-CE								31.0		
5526-14.0 Bar-CE								14.0		Cat IV
5526-16.2 Bar-CE								16.2		
5526-20.7 Bar-CE								20.7		
5526-24.1 Bar-CE	1/2 MPT	1/2 FPT	73	31.8 A/F	12.7	23	109.7	24.1	0.30	
5526-24.8 Bar-CE								24.8		
5526-27.6 Bar-CE								27.6		
5526-31.0 Bar-CE								31.0		
5626-10.3 Bar-CE								10.3		Cat IV
5626-17.2 Bar-CE	1/2 MPT	1/2 FPT	73	Ø28.6	12.7	23	109.7	17.2	0.20	
5626-20.7 Bar-CE								20.7		
5627-10.3 Bar-CE								10.3		
5627-17.2 Bar-CE	3/4 MPT	3/4 FPT	81	Ø38.1	19	29	187.1	17.2	0.34	Cat
5627-20.7 Bar-CE								20.7		
5628-10.3 Bar-CE								10.3		
5628-17.2 Bar-CE	1MPT	1FPT	93	Ø44.5	25.5	32	335.5	17.2	0.56	Cat
5628-20.7 Bar-CE								20.7		
5629-10.3 Bar-CE								10.3		
5629-17.2 Bar-CE 5629-20.7 Bar-CE	1 1/4 MPT	1 1/4 FPT	95	50.8 A/F	33.3	33	683.9	17.2 20.7	0.76	Cat I

Remarque 1: AMNS = Aire minimale nette de la section de l'écoulement. AMNS est l'aire nette après l'éclatement du disque qui prend en compte chaque membre de la structure qui réduit l'aire. L'AMNS doit être utilisée en tant qu'aire de la section de l'écoulement, A, dans le calcul de la capacité de débit.

Guide de sélection

- 1. La pression de tarage du disque de rupture doit être identique à la pression de tarage de la soupape de sécurité de Henry Technologies.
- 2. La pression d'éclatement est sujette à une tolérance de fabrication de l'ordre de +/-5%. Cette tolérance doit être prise en compte lors de la définition de la pression de tarage (voir table).
- 3. La pression d'éclatement est affectée par la température de fonctionnement du fluide. Voir table pour les coefficients d'ajustement. Avec des températures de fonctionnement plus élevées, la pression d'éclatement du disque est réduite tandis qu'elle augmente pour des températures inférieures à 0. Ce coefficient doit être pris en compte lors de la définition de la pression de tarage.

Plage de températures °C	Coefficient d'ajustement
-40 to -18	1.05
-17 to -1	1.04
0 to +45	1
+46 to +80	0.98
+81 to +107	0.97


- 4. Il est recommandé que la pression maximale du système ne dépasse pas 80% de la pression d'éclatement afin de minimiser le risque de fatigue prématurée du disque. Si les pressions de fonctionnement excèdent 90% de la pression d'éclatement, le disque doit être remplacé immédiatement.
- 5. La résistance à la fatigue de chaque disque à la conception est estimée à 100 000 cycles de pression. La durée de vie peut être réduite à cause de pressions ou de températures excessives, de corrosion, d'endommagement physique, etc

Exemple

Pression de tarage du disque voulue = 31 barg à 22 °C
Pression minimale d'éclatement effective en tenant compte de la tolérance de fabrication = 0.95 x 31 = 29.45 barg

Pression maximale d'éclatement effective en tenant compte de la tolérance de fabrication = 1.05 x 31 = 32.55 barg

Température maximale de fonctionnement du fluide = 40 °C

Afin de déterminer la pression maximale recommandée de fonctionnement, l'utilisateur doit prendre en compte les -5% dus à la tolérance de fabrication et les coefficients de température et de fatigue.

Ainsi:

Pression minimale d'éclatement effective = 29,45 barg Coefficient de température = 1,0 Coefficient de fatigue = 0,8

Pression maximale recommandée de fonctionnement pour le disque de rupture $= 29.45 \times 1.0 \times 0.8 = 23.6$ barg.

Installations - Recommandations

- Raccorder le disque de rupture soit directement à l'appareil sous pression soit à une vanne à trois voies au-dessus du niveau du liquide frigorigène dans l'espace occupé par la vapeur.
- Le disque de rupture est composé de deux pièces. Pour éviter tout endommagement pendant l'assemblage ou l'enlèvement, les instructions d'installation du produit doivent être suivies à la lettre.
- 3. La tuyauterie ne doit pas imposer de charge au disque de rupture. Des charges peuvent survenir à cause de mauvais alignements, de détente thermique, de la poussée du gaz refoulé, etc.

VANNES D'ARRÊT DOUBLES À 3 VOIES

La fonction d'une vanne à 3 voies est de permettre le remplacement d'un des dispositifs de décompression, tandis que l'autre protège l'appareil sous pression. De cette façon, l'appareil sous pression est protégé contre toute surpression. Cela permet aussi de remplacer un dispositif de sécurité in situ sans enlever la charge de fluide frigorigène du système

Utilisation

Toutes les vannes à trois voies peuvent être utilisées avec les fluides frigorigènes HFC et HCFC associés à leurs huiles. La série 802 peut aussi être utilisée avec l'ammoniac.

La norme de réfrigération EN378 indique qu'une vanne à trois voies est nécessaire sur les récipients de certaines tailles. L' EN378 ou une Norme Nationale équivalente doivent être consultées pour plus de détails. Il est cependant possible de monter une vanne à trois voies sur des récipients de toute taille pour remplacer les dispositifs de sécurité de façon sure, pratique et économique.

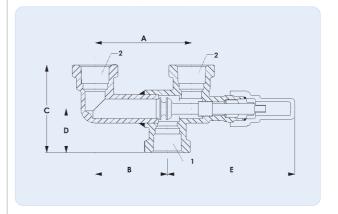
Caractéristiques principales

- Conception solide éprouvée
- Compacte

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 31 barg

Températures de fonctionnement admissibles = - 29 °C à + 149 °C


Matériaux de construction

Les corps des vannes des séries 92 et 80 sont respectivement en laiton et en acier enrichi en carbone. La tige est en acier plaqué. La garniture d'étanchéité de la tige est soit en PTFE soit en graphite. Le bouchon d'étanchéité est en plastique moulé.

Installation - Recommandations

- 1. Assembler la vanne à trois voies à l'aide d'un raccord de tuyau solide
- 2. La tuyauterie ne doit pas imposer de charge à la vanne. Des charges peuvent survenir à cause de mauvais alignements, de détente thermique, de la poussée du gaz refoulé, etc.c

1 Entrée

2 Sortie

Type	Numéro de référence	Dimension des raccords (pouce)			Côtes (mm)	Poids (kg)	Kv (m ³ /hr)	Cat. CE		
			Α	A B C D E						
92	923	3/8 FPT	70	52	63.5	32	91	0.51	2.80	SEP
92	925	1/2 FPT	70	52	63.5	32	91	0.47	2.83	SEP
92	927	3/4 FPT	70	52	70	35	100	0.70	3.48	SEP
802*	8021A	1/2 FPT	92	59	86	44	146	1.47	4.78	SEP
802*	8022A	3/4 FPT	92	59	86	44	146	1.33	7.60	SEP
802*	8024-CE	1 FPT	148	94	99	51	191	3.70	10.07	SEP (CAT I)
802*	8025-CE	1 1/4 FPT	148	94	99	3.25	14.36	CAT I (CAT II)		
*Dan4 24		amoniae Las navar	المحدا محمد عالم	and la Cat CE land	1/	-44ili-4				

*Peut être utilisée avec l'ammoniac. Les parenthèses indiquent la Cat. CE lorsque l'ammoniac est utilisé

INDICATEUR DE PRESSION

La fonction d'un indicateur de pression est de permettre une inspection visuelle du niveau de pression au cas où un disque de rupture aurait éclaté. Si le disque a éclaté, la soupape de sécurité aura évacué le gaz et devra être remplacée. (Voir informations concernant le dispositif de sécurité Sentry).

Utilisation

L'indicateur de pression G15 est conçu pour être utilisé en tant que pièce du montage Sentry de dispositifs de sécurité

Le produit peut être utilisé avec les fluides frigorigènes HFC et l'ammoniac associés à leurs huiles

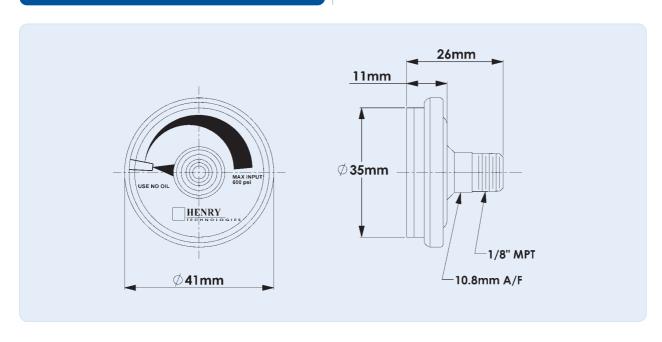
Caractéristiques principales

- Large cadran indicateur facile à lire
- Mouvement en acier inoxydable

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 41,4 barg

Températures de fonctionnement admissibles = - 40 °C à + 65 °C


Matériaux de construction

Boîtier et mouvement en acier inoxydable

Vitre de l'écran en plexiglas.

Numéro de référence	Poids (g)	Cat. CE
G15	27	SEP

CONTACTEUR DE PRESSION

Le contacteur de pression SW60 envoie un signal électrique lorsque qu'un fluide applique une pression sur l'objet.

Utilisation

Le contacteur de pression est conçu pour être utilisé en tant que pièce du montage Sentry de dispositifs de sécurité.

Le produit peut être utilisé avec les fluides frigorigènes HFC et HCFC et l'ammoniac associés à leurs huiles.

Caractéristiques principales

- Conforme à la norme CE
- Conception solide
- Indice de protection IP 65
- Branchement électrique facile via connecteurs DIN
- Contacts normalement ouverts ou fermés

Caractéristiques techniques

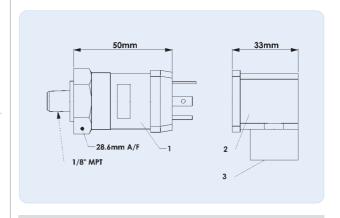
Champ de Tarage = à partir de 0,34 barg

Pression témoin du contacteur = 70 barg

Températures ambiantes de fonctionnement admissibles = -40 °C à + 80 °C Températures de fonctionnements admissibles du fluide = -40 °C à + 120 °C Caractéristiques du contacteur = 5A, SPDT à 120/240 V CA et 12/24 V CC

Connexion électrique = DIN, raccordement de 1/2"

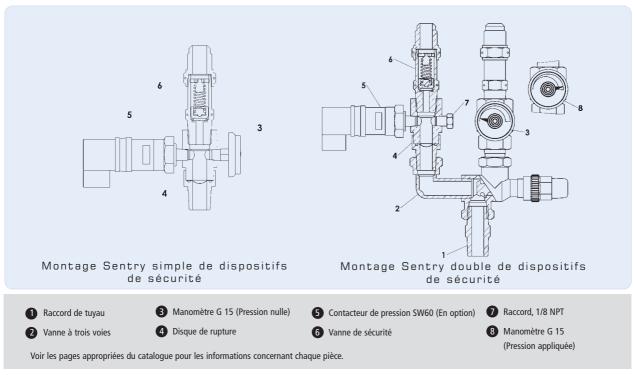
Raccord mécanique = A/8" NPT


Poids = 0.14 kg

Label CE pour les directives LVD et EMC.

Matériaux de construction

Le boîtier est en acier inoxydable et la membrane d'étanchéité est en néoprène.



- 1 Contacteur
- 2 Connecteur DIN
- 3 Raccordement électrique de 1/2"

MONTAGES SENTRY DE DISPOSITIFS DE SÉCURITÉ

L'objectif premier du montage Sentry de dispositifs de sécurité est de fournir une étanchéité positive entre le système et l'atmosphère et de faciliter le montage d'un dispositif d'indication. Le dispositif d'indication informe l'utilisateur si la soupape de sécurité a évacué le gaz. Ceci fait parti des requis de la norme de réfrigération EN378.

Un montage Sentry double de dispositifs de sécurité fournit aussi un moyen sure et économique de remplacer les dispositifs de sécurité sur l'appareil sous pression. Généralement, cet appareil est un réservoir de liquide frigorigène. Le montage Sentry protège le réservoir contre toute surpression.

Les montages Sentry de dispositifs de sécurité sont composés d'un certain nombre de produits de la gamme de Henry technologies. Il existe deux versions : un montage simple de dispositifs de sécurité ou un montage double de dispositifs de sécurité.

Le montage simple de dispositifs de sécurité est composé d'une soupape de sécurité, d'un disque de rupture, d'un manomètre et d'un contacteur de pression en option.

Le montage double de dispositifs de sécurité est composé de deux soupapes de sécurité, de deux disques de rupture, de deux manomètres, de deux contacteurs de pression en option et d'une vanne à trois voies.

Remarque: Chaque dispositif de sécurité doit avoir la capacité de protéger le récipient contre toute surpression.

Pour les deux montages, un bouchon d'obturation de disque de rupture de 1/8" NPT est nécessaire si l'utilisateur ne monte pas le manomètre et le contacteur de pression. Pour le montage double, un raccord de tuyau est normalement nécessaire pour assembler la vanne à trois voies au récipient sous pression.

En général, l'utilisateur a besoin de commander individuellement les pièces de chaque montage. Pour des assemblages normaux, les kits de dispositifs de sécurité SDK sont disponibles.

Utilisation et caractéristiques

Conformément aux "Institute of Refrigeration Guidelines" (RU), Henry Technologies recommande que les soupapes de sécurité et la partie inférieure des disques de rupture soient remplacées au moins tous les 5 ans. Toutes les parties supérieures des disques de rupture doivent être

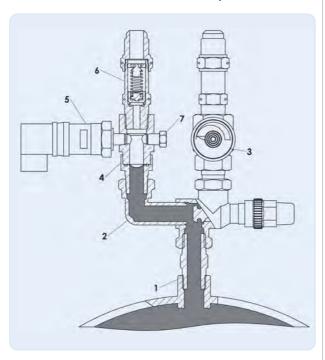
remplacées tous les 2 ans. Ces périodes de temps peuvent être réduites si d'autres régulations entrent en vigueur. Le montage Sentry double fournit une solution pratique pour remplacer les dispositifs de sécurité en plus des autres avantages pour l'utilisateur.

Les caractéristiques du montage Sentry double sont:-

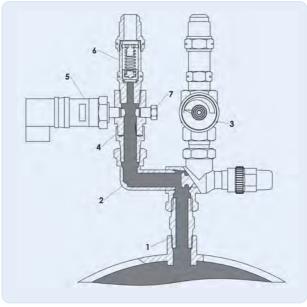
- 1. Une maintenance sure, pratique et économique: la vanne à trois voies permet le remplacement de l'un des dispositifs de sécurité, tandis que l'autre protège l'appareil sous pression. De cette façon, un récipient est protégé contre toute surpression pendant qu'il est en service. Cela permet aussi de remplacer un dispositif de sécurité in situ, sans enlever la charge de fluide frigorigène du système.
- 2. **Une protection contre la surpression:** le disque de rupture et la soupape de sécurité s'ouvrent à une valeur prédéterminée pour éviter toute pression excessive
- Conformité au code: Les codes de réfrigération indiquent qu'une vanne à trois voies est nécessaire sur les récipients de certaines tailles
- Etanchéité hermétique: En cours de fonctionnement normal, le disque de rupture protège contre toute fuite ou perte de fluide frigorigène à travers une soupape de sécurité.
- 5. Avertissement d'évacuation du gaz par le dispositif de sécurité: le manomètre et le contacteur de pression indiquent que la soupape de sécurité a évacué le gaz. Le manomètre fournit une indication visuelle. Le contacteur de pression envoie un signal électrique qui peut être utilisé pour déclencher une alarme.
- 6. Contrôle intermédiaire: le manomètre et l'indicateur de pression peuvent être utilisés pour vérifier que le disque de rupture est intacte. Ceci fournit un avertissement en cas d'accroissement de la pression derrière le disque causé par l'endommagement de ce dernier. Toute contre pression augmentera la pression de décompression du disque de rupture.

A titre comparatif, les caractéristiques d'un montage Sentry simple sont : protection contre toute surpression, étanchéité hermétique, avertissement d'évacuation du gaz par le dispositif de sécurité et contrôle intermédiaire

Combinaisons de montages Sentry


La table indique les combinaisons recommandées de soupape de sécurité, de rupture de disque et de vanne à trois voies. Merci de se reporter aux pages du catalogue dédiées aux soupapes de sécurité pour les dimensions des raccords de sortie.

Soupape de sécurité	Disque de rupture	Vanne à trois voies	Dimension
No de référence	No de référence	No de référence	des raccords, pouce
526E	5525	923	3/8
5231A	5525	923	3/8
5231B	5526	925	1/2
5232A, 5240	5526	8021A ou 925 (voir Rq)	1/2
5340	5626	8021A	1/2
5242	5627	8022A ou 927 (voir Rq)	3/4
5342, 5344A	5627	8022A	3/4
5244, 5344, 5345	5628	8024-CE	1
5246, 5346	5629	8025-CE	1 1/4


Remarque: lorsque cela est possible, il est préférable de choisir le modèle de vanne à trois voies avec la plus grande valeur de Kv.

Fonctionnement

Le diagramme ci-dessous montre un disque de rupture intact. La pression du système qui agit sur le disque de rupture est normale. Il n'y a pas de pression dans la chambre entre le disque de rupture et la soupape de sécurité. Remarquer que la pression n'est déviée que par un seul côté de la vanne à trois voies ce qui permet d'enlever en toute sécurité la vanne située de l'autre côté si besoin il y a.

Le diagramme ci-dessus montre que le disque de rupture a éclaté. La pression est maintenant uniquement contenue par la soupape de sécurité. Le contacteur de pression détecte la pression entre le disque de rupture et la soupape de sécurité. Le manomètre, si il est installé, indique la présence de la pression dans la chambre. Dans ce cas là, la soupape de sécurité aura évacué le gaz à cause de la surpression du système. La soupape de sécurité et le disque de rupture doivent maintenant être remplacés.

KITS DE DISPOSITIFS DE SÉCURITÉ

La fonction d'un kit de dispositifs de sécurité est de protéger contre toute surpression. Pour des raisons de sécurité, une surpression excessive dans un quelconque composant d'un système de réfrigération doit être évitée.

Deux kits sont disponibles, SDK 1 et SDK 2.

Le kit SDK 1 est un montage de dispositifs de sécurité simple. Il comprend une soupape de sécurité, un disque de rupture, un manomètre et un bouchon d'obturation de disque de rupture de 1/8" NPT.

Le kit SDK 2 est un montage de dispositifs de sécurité double. Il comprend deux soupapes de sécurité, deux disques de rupture, deux manomètres, deux bouchons d'obturations de disque de rupture de 1/8" NPT, une vanne à trois voies et un raccord de tuyau de 1/2" NPT.

Utilisation

Le kit de dispositifs de sécurité de Henry Technologies s'utilise généralement pour protéger un récipient de liquide contre toute surpression. Voir les pages du catalogues dédiées à chaque pièce.

Les kits peuvent être utilisées avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Caractéristiques principales

- Combine les dispositifs de décompression de Henry Technologies dans un unique kit facile à commander
- Pièces empaquetées dans une boîte compacte
- Facile à entreposer

Caractéristiques techniques

Voir les pages du catalogue pour les pressions et températures de fonctionnement maximales de chaque pièce.

Matériaux de construction

Les principales pièces des kits SDK sont en laiton ou en acier. Voir les pages du catalogue dédiées à chaque pièce pour plus de détails.

Données pour la sélection

Le choix des dispositifs de sécurité doit être effectué comme indiqué dans les pages du catalogue. S'assurer que les indications pour le choix de la soupape de sécurité sont respectées avant de commander les kits.

	Soupape de sécurité		Disque de rupture	Manomètre		
No de référence	No de référence	Qté	No de référence	Qté	No de référence	Qté
SDK1-14.0BAR-CE	5231B-14.0BAR-CE	1	5526-14.0BAR-CE	1	G15	1
SDK1-16.2BAR-CE	5231B-16.2BAR-CE	1	5526-16.2BAR-CE	1	G15	1
SDK1-20.7BAR-CE	5231B-20.7BAR-CE	1	5526-20.7BAR-CE	1	G15	1
SDK1-24.1BAR-CE	5231B-24.1BAR-CE	1	5526-24.1BAR-CE	1	G15	1
SDK1-24.8BAR-CE	5231B-24.8BAR-CE	1	5526-24.8BAR-CE	1	G15	1
SDK1-27.6BAR-CE	5231B-27.6BAR-CE	1	5526-27.6BAR-CE	1	G15	1
SDK1-31.0BAR-CE	5231B-31.0BAR-CE	1	5526-31.0BAR-CE	1	G15	1

	Soupape de sécurité		Disque de rupture		Manomètre		Vanne à trois vo	oies
No de référence	No de référence	Qté	No de référence	Qté	No de référence	Qté	Part No	Qté
SDK2-14.0BAR-CE	5231B-14.0BAR-CE	2	5526-14.0BAR-CE	2	G15	2	925	1
SDK2-16.2BAR-CE	5231B-16.2BAR-CE	2	5526-16.2BAR-CE	2	G15	2	925	1
SDK2-20.7BAR-CE	5231B-20.7BAR-CE	2	5526-20.7BAR-CE	2	G15	2	925	1
SDK2-24.1BAR-CE	5231B-24.1BAR-CE	2	5526-24.1BAR-CE	2	G15	2	925	1
SDK2-24.8BAR-CE	5231B-24.8BAR-CE	2	5526-24.8BAR-CE	2	G15	2	925	1
SDK2-27.6BAR-CE	5231B-27.6BAR-CE	2	5526-27.6BAR-CE	2	G15	2	925	1
SDK2-31.0BAR-CE	5231B-31.0BAR-CE	2	5526-31.0BAR-CE	2	G15	2	925	1

FILTRE EN Y

La fonction d'un filtre d'huile est d'extraire du fluide frigorigène et de l'huile les impuretés du système.

Utilisation

Un filtre Y peut être installée sur tout emplacement qui nécessite une protection contre les impuretés dans un système de réfrigération et de conditionnement d'air.

Le produit peut être utilisé avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

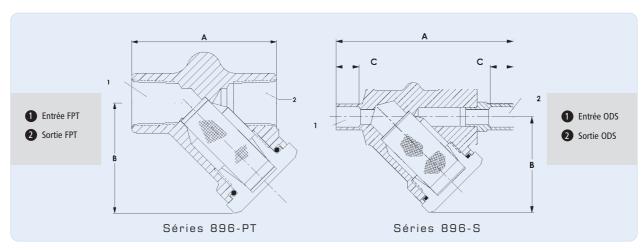
Caractéristiques principales

- Superficie de tamis importante pour n'avoir qu'une faible chute de pression et une longue durée de vie
- Possibilité d'enlever le tamis pour le nettoyer
- Raccord par soudure et filetage NPT en options

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 34,5 barg Températures de fonctionnement admissibles = -29 °C à + 93 °C

Matériaux de construction


Le filtre est en laiton et le tamis est en acier inoxydable

Le joint torique est en néoprène.

Installation - Recommandations

 Installer le filtre dans le bon sens. Il est recommandé d'installer des vannes de chaque côté de l'unité pour faciliter le remplacement, au cas ou le tamis serait bouché.

No de référence	Taille du raccord (pouce)		Côtes (mm)		Caractéristiques du	tamis	Poids (kg)	Cat. CE	
No de reference	rame au raccora (pouce)	Α	В	С	Superficie (mm²)	maille	Totas (kg)	cut. CE	
896-1/4PT	1/4 FPT	54	41	-	1290	100	0.25	SEP	
896-3/8PT	3/8 FPT	54	41	-	1290	100	0.22	SEP	
896A-3/8S	3/8 ODS	86	46	11	2030	100	0.38	SEP	
896A-1/2S	1/2 ODS	87	46	13	2030	100	0.38	SEP	
896A-5/8S	5/8 ODS	90	46	16	2030	100	0.36	SEP	
896B-5/8S	5/8 ODS	114	65	16	4520	100	1.14	SEP	

INDICATEURS D'HUMIDITÉ

La fonction première d'un indicateur d'humidité est de permettre une inspection visuelle des niveaux d'humidité du système. Cependant, le produit peut aussi être utilisé en tant qu'indicateur de retour de liquide frigorigène ou d'huile.

Utilisation

Les indicateurs d'humidité "Dri-vue" de Henry Technologies sont approuvés pour fonctionner avec les fluides frigorigènes HFC et HCFC associés à leurs huiles.

Caractéristiques principales

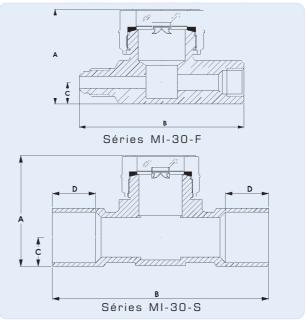
- Un système de Henry Technologies breveté#
- Grand voyant, inspection facilitée
- Papier indicateur par contraste positif des couleurs
- Bouchon d'étanchéité de l'indicateur remplaçable
- Protection du papier à l'aide d'un filtre interne
- Bouchon de protection en plastique fournit avec le modèle standard
- Raccords SAE flare ou par soudure
- # US patents 5852937

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 34,5 barg Températures de fonctionnement admissibles = -10 °C à +93 °C

Matériaux de construction

Le corps est en laiton. Le bouchon d'étanchéité est composé d'un voyant incorporé dans un boîtier en acier plaqué enrichi en carbone. Le bouchon d'étanchéité est vissé sur le corps et scellé à l'aide d'un joint d'étanchéité en PTFE.


Tables de performances

Les équivalences entre la couleur de l'indicateur et le niveau d'humidité en ppm sont données dans la table ci-dessous pour différents fluides frigorigènes. Le niveau d'humidité varie avec la température de fonctionnement du fluide.

La couleur indique le niveau de sécheresse du fluide frigorigène :-

Couleurs indicatrices : Sec = Vert, Avertissement = Vert chartreux, Humide = Jaune

Installation - Recommandations

- Pour les indicateurs d'humidité dont le raccord se fait par soudure, le bouchon d'étanchéité doit être enlevé avant le brasage.
- 2. Si le papier indicateur est décoloré ou endommagé, le bouchon d'étanchéité doit être remplacé. La référence pour un bouchon d'étanchéité de rechange est MI-3.

Type	No de référence	Ø du raccord (pouce)		Côte	(mm)		Poids (kg)	Cat. CE
туре	No de reference	o da raccora (pouce)	Α	В	С	D	rolus (kg)	Cat. CL
	MI-30-1/4F	1/4 SAE Flare mâle x femelle	38	67	9	N/A	0.20	SEP
MI-30-F	MI-30-3/8F	3/8 SAE Flare mâle x femelle	43	71	12	N/A	0.26	SEP
	MI-30-1/2F	1/2 SAE Flare mâle x femelle	42	80	10	N/A	0.27	SEP
	MI-30-1/4S	1/4 ODS	38	67	9	8	0.20	SEP
	MI-30-3/8S	3/8 ODS	38	67	9	8	0.19	SEP
MI-30-S	MI-30-1/2S	1/2 ODS	38	67	9	10	0.18	SEP
1411-20-2	MI-30-5/8S	5/8 ODS	43	75	12	13	0.22	SEP
	MI-30-7/8S	7/8 ODS	49	95	13	19	0.33	SEP
	MI-30-1 1/8S	1 1/8 ODS	54	84	16	23	0.29	SEP

Humidité "dri-vue" - Table des couleurs

		Teneur en l	numidité (parties par million)				
Type de fluide frigorigène		Couleur de l'indicateur					
	Temp (°C)	Vert	Vert chartreux	Jaune			
	24	Inférieure à 15	15-90	Supérieure à 90			
R404A	38	Inférieure à 25	25-115	Supérieure à 115			
	52	Inférieure à 30	30-140	Supérieure à 140			
	24	Inférieure à 30	30-120	Supérieure à 120			
R22	38	Inférieure à 45	45-180	Supérieure à 180			
	52	Inférieure à 60	60-240	Supérieure à 240			

FILTRES DÉSHYDRATEURS

La fonction d'un filtre déshydrateur est de supprimer les contaminants, les acides et l'humidité du système.

Utilisatior

Les filtres déshydrateurs de Henry Technologies sont conçus pour être utilisés sur des conduites de liquides.

La gamme de produits est approuvée pour être utilisée avec les fluides frigorigènes HCFC indiqués dans la table.

Caractéristiques principales

- Capacité à protéger le système éprouvée
- Haute capacité de filtration
- Haute capacité d'absorption de l'humidité et de neutralisation des acides
- Cartouches interchangeables
- Raccords en cuivre
- Couvercle à bride comportant une prise de pression de 1/4" NPT

Caractéristiques techniques

Pressions de fonctionnement admissibles = 0 à 34,5 barg

Cartouches pour filtre

Chaque cartouche de filtre FIL-COR offre uniquement une filtration micronique lorsque déshydrater n'est pas nécessaire. Les éléments FIL-COR sont interchangeables avec les éléments FIL-COR

Cartouches à tamis acie

'NEW RANGE OF SEALED FILTER DRIERS
AVAILABLE NOW AND REPLACEABLE CORE FILTER
DRIES AVAILABLE SOON. FOR LATEST ENGLISH
INFORMATION ON SEALED FILTER DRIERS
PLEASE REFER TO THE 'LINE COMPONENTS'
SECTION OF THE WEBSITE.'

lo de référence	Taille du	DRI	-COR	Ca	rtouches	Caractéristiqu	es des cartouches							Poids	Kv	Cat. C
	raccord (pouce)	Puissance recommandée (kW)*	Capacité de débit pour une chute de pression de 0,138 bar, en kW			Volume (cm³)	Superficie (cm²)	А	В	С	D	Е	F**	(kg)	(m ³ /hr)	
		R22	R22	Qté.	No de Cat.											
V8048-5/8-CE	5/8 ODS	53	81	-1			413	152	89	13	229	121	172	5.4	3.42	Cat I
V8048-7/8-CE	7/8 ODS		172	1			413		95	19	232	121	172	5.4	6.83	Cat I
V8048-1 1/8-CE	1 1/8 ODS		264	1		787	413	159	99	24	235	121	172	5.4	10.26	Cat I
V8048-1 3/8-CE	1 3/8 ODS		356	1			413		102	25	238	121	172	5.4	14.53	Cat I
V8048-1 5/8-CE	1 5/8 ODS		440	1		787	413		102	29	241	121	172	5.4	17.95	Cat I
V8096-7/8-CE	7/8 ODS	106	183	2		1574	826	295	95	19	364	121	312	6.8	6.84	Cat I
V8096-1 1/8-CE	1 1/8 ODS	106	271	2	848-C 0u 848-CM	1574	826	298	99	24	378	121	312	6.8	11.11	Cat I
V8096-1 3/8-CE	1 3/8 ODS	141	363	2		1574	826	302	102	25		121	312	6.8	14.53	Cat I
V8096-1 5/8-CE	1 5/8 ODS	141	458	2		1574	826		102	29	381	121	312	6.8	17.95	Cat I
V8096-2 1/8-CE	2 1/8 ODS	141	634	2		1574	826	308	105		384	121	312	6.8	25.64	Cat I
V8144-1 1/8-CE	1 1/8 ODS	176	282	3		2361	1238	441	99	24	518	121	451	8.2	11.11	Cat I
V8144-1 3/8-CE	1 3/8 ODS	211		3		2361	1238	445	102	25	521	121	451	8.2	15.38	Cat I
V8144-1 5/8-CE	1 5/8 ODS	211	475	3		2361	1238	448	102	29	524	121	451	8.2	18.80	Cat I
V8192-1 5/8-CE	1 5/8 ODS	317	496	4		3148	1651	588	102	29	673	121	591	9.5	5.13	Cat II
V8192-2 1/8-CE	2 1/8 ODS	317	676	4		3148	1651	591	105	35	676	121	591	9.5	26.50	Cat II
V8300-2 1/8-CE	2 1/8 ODS	440	693	3	810-CM	4917	1896	613	137	35		152	169	20.4	27.35	Cat II
V8400-2 5/8-CE	2 5/8 ODS	581		4			2528					152		23.6	35.04	

'F' est l'espace minimale nécessaire pour extraire les cartouches des filtres déshydrateurs de l'enveloppe.

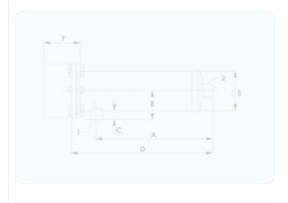
Guide de sélection

L'utilisateur doit choisir un modèle selon le type de fluide frigorigène, la puissance frigorifique et le degré de filtration/déshydratation voulu. La dimension du raccord voulue peut ensuite être utilisée lors du choix final.

De façon alternative, l'utilisateur peut d'abord choisir à partir de la dimension du raccord et ensuite vérifier que la puissance frigorifique et les limites de filtration/déshydratation du modèle choisi conviennent.

Exemple

Fluide frigorigène = R22
Puissance frigorifique = 80 kW


Degré de filtration/déchydratation requis — Standarr

Modèles présélectionnés : V8076-7/8-CE ou V8096-1 1/8-CE, avec les cartouches 848-C. Le choix final repose sur la dimension du raccord voulue

Remarque: L'utilisateur peut décider de surdimensionner le filtre déshydrateur en se reposant sur sa propre expérience ou si le niveau de contamination du système risque d'être plus élevé qu'en temps normal.

Installation - Recommandations

- Installer le filtre déshydrateur en amont des équipements de contrôl d'une conduite de liquide. Placer en amont d'un indicateur d'humidité afin de pouvoir mesurer l'efficacité de la déshydratation.
- S'assurer que la dimension de 'F' est respectée pour pouvoir enleve les cartouches
- 3. Il est recommandé d'installer l'unité horizontalement pour faciliter le remolacement de la cartouche

'NEW RANGE OF SEALED FILTER DRIERS
AVAILABLE NOW AND REPLACEABLE CORE FILTER
DRIES AVAILABLE SOON. FOR LATEST ENGLISH
INFORMATION ON SEALED FILTER DRIERS
PLEASE REFER TO THE 'LINE COMPONENTS'
SECTION OF THE WEBSITE.'

* Cartouche de rechange pour les filtres déshydrateurs obsolètes de la série V8024

PIÈCES DETACHEES

FILTRES DÉSHYDRATEURS DE RECHANGE

Cartouches de rechange DRI-COR©

Chaque cartouche pour filtre déshydrateur DRI-COR est composée d'un mélange de dessicants afin d'offrir une haute résistance mécanique, une filtration micronique, une haute absorption d'humidité et neutralisation des acides. Deux types sont disponibles - Standard ou à Haute Capacité. Les types sont interchangeables et ont la même capacité de débit. La cartouche à Haute Capacité dispose d'une capacité supplémentaire de déshydratation. Chaque cartouche est entièrement activée et placée dans un conteneur hermétiquement scellé

Cartouches de rechange FIL-COR©

Chaque cartouche de filtre FIL-COR offre uniquement une filtration micronique lorsque déshydrater n'est pas nécessaire. Les éléments FIL-COR sont interchangeables avec les éléments FIL-COR

Cartouches à tamis acier

La cartouche est un tamis en acier inoxydable à maille 1000, renforcé à l'aide d'une enveloppe en acier tubulaire perforée. Ces cartouches sont interchangeables avec les cartouches pour filtre déshydrateurs.

Pour les tables de caractéristiques des produits ci-dessus, voir la section principale sur les filtres déshydrateurs.

Cartouches de rechange pour les filtres de conduites d'aspiration qui ne sont plus fabriquées

Cartouches FIL-COR de rechange des filtres des séries 83, 85 & 865 pour conduites d'aspiration.

Table de caractéristiques des cartouches										
No de référence des cartcouche	Diamètre du boîtier	Longueur de la cartouche (mm)	Superficie (cm ²)	Poid (kg)						
848-CF	4.75	140	619	0.33						
810-CF	6.00	176	968	0.50						

Cartouches de rechange pour les filtres déshydrateurs qui ne sont plus fabriquées

Cartouches de rechange DRI-COR© pour les filtres des conduites d'aspiration des séries dont l'enveloppe est en laiton et qui ne sont plus fabriquées

	Diamètre désydrateur (Pouces)	Type de cartouche	Volume (cm³)	Capacités nominales en gouttes d'eau selon la norme A.R.I		Cartouche	
No de référence				R22 (60ppm) Température de la conduite de liquide °C		Longueu (mm)	Poids (kg)
				24°C	52°C	(,	
872-NMS	2	DRI-COR Filtre déshydrateur	164	117	83	127	0.30
873-NMS	3		738	441	314	229	0.96
876-NMS	4 1/4		1788	1069	760	267	2.18
875-NMS	5		820	1038	733	127	1.50

VANNES À BOISSEAU SPHÉRIQUE

Rallonges de tiges pour vannes à boisseau sphérique

Les rallonges de tiges permettent de prolonger la durée de vie des vannes à boisseau sphérique en ajoutant un joint supplémentaire. Elles peuvent être installées sur le corps de la vanne in situ, permettant d'ajouter un nouveau joint sans enlever la vanne du système. Le kit d'assemblage des rallonges de tige comprend : le corps du joint, une tige, un joint torique, un joint pour bouchon et des instructions d'installation.

No de référence des van	nes à boisseau sphérique			
Standard	Vanne Schrader	Dimension des raccords (pouce)	No de référence de l'assemblage des rallonges de tige	Poids (kg)
900203	903203	3/8		0.09
900204	903204	1/2		
900205	903205	5/8 & 16mm	902205B-3A	
900306	903306	3/4		
900307	903307	7/8 & 22mm		
900409	903409	1 1/8		
900511-CE	903511-CE	1 3/8 & 35mm	902409B-3A	0.17
900613-CE	903613-CE	1 5/8	0035430 34	0.20
900617-CE	903617-CE	2 1/8 & 54mm	902613B-3A	0.30

CLAPETS ANTI-RETOUR

Kits de pièces de rechange pour les clapets anti-retour de la série NRV

Le kit comprend un bouchon en laiton, un joint torique, un piston, un ressort, un bouchon en plastique et un manuel d'instruction.

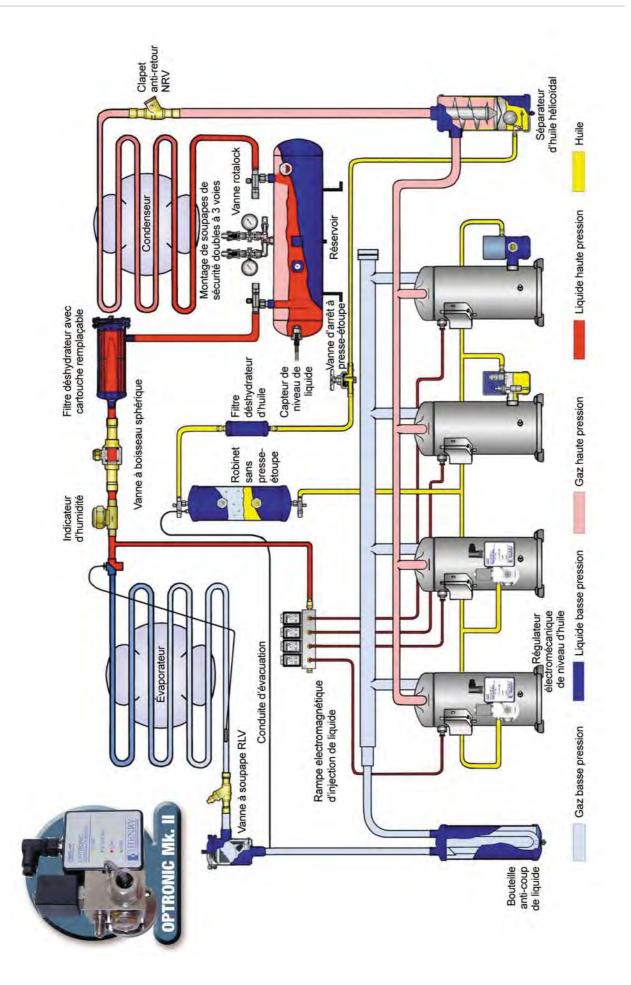
No de référence	Convient aux clapets anti-retour
NRV 14/18-S1	NRV14 and NRV18
NRV 22/26-S1	NRV22 and NRV26

VANNES À SOUPAPE

Kits de pièces de rechange pour les vannes à soupape de la série RLV

Le kit de joints de rechange comprend : 3 joints toriques et un joint pour bouchon en Téflon. Le kit de rechange complet comprend :un bouchon, une tige de manoeuvre, une douille, un siège arrière en laiton, anneau de siège en nylon, un écrou et une rondelle de retenue, un chapeau, 4 joints toriques, un joint pour bouchon en Téflon et un manuel d'instruction.

Description
Joints de rechange pour les vannes RLV14/18
Ensemble complet de pièces de rechange pour les vannes RLV14/18
Joints de rechange pour les vannes RLV22 /26
Ensemble complet de pièces de rechange pour les vannes RLV22 /26



NOTES

NOTES



Henry Technologies | 76 Mossland Road | Hillington Park | Glasgow | G52 4XZ | Écosse | RU

Tel. +44 141 882 4621 • Fax. +44 141 810 9199